Spaces:
No application file
No application file
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,35 @@
|
|
1 |
import os
|
|
|
2 |
import streamlit as st
|
3 |
-
from groq import Groq
|
4 |
from googletrans import Translator
|
5 |
import asyncio
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Function to get recommendations from Groq API based on user input
|
11 |
def get_opportunities(user_query):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
|
21 |
# Function to translate text into the selected language (async version)
|
22 |
async def translate_text(text, target_language):
|
@@ -78,10 +91,13 @@ if st.button("Send"):
|
|
78 |
with st.spinner("Fetching opportunities..."):
|
79 |
try:
|
80 |
# Get the opportunity details based on user query
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
# Run the async translate function and get the translated text
|
84 |
-
translated_opportunities = asyncio.run(translate_text(
|
85 |
|
86 |
# Append AI response to chat history
|
87 |
st.session_state.messages.append({"role": "ai", "content": translated_opportunities})
|
|
|
1 |
import os
|
2 |
+
import requests
|
3 |
import streamlit as st
|
|
|
4 |
from googletrans import Translator
|
5 |
import asyncio
|
6 |
|
7 |
+
# Ensure you have the correct API URL for Groq and the key is set
|
8 |
+
GROQ_API_URL = "https://api.groq.com/v1/completions" # Replace with the actual endpoint if different
|
9 |
+
API_KEY = os.environ.get("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")
|
10 |
+
|
11 |
+
if not API_KEY:
|
12 |
+
raise ValueError("API key is missing. Make sure to set the GROQ_API_KEY environment variable.")
|
13 |
|
14 |
# Function to get recommendations from Groq API based on user input
|
15 |
def get_opportunities(user_query):
|
16 |
+
headers = {
|
17 |
+
"Authorization": f"Bearer {API_KEY}",
|
18 |
+
"Content-Type": "application/json"
|
19 |
+
}
|
20 |
+
|
21 |
+
payload = {
|
22 |
+
"model": "llama-3.3-70b-versatile", # Example model, replace with the actual model you want
|
23 |
+
"messages": [{"role": "user", "content": user_query}],
|
24 |
+
}
|
25 |
+
|
26 |
+
# Send the request to the Groq API
|
27 |
+
response = requests.post(GROQ_API_URL, json=payload, headers=headers)
|
28 |
|
29 |
+
if response.status_code == 200:
|
30 |
+
return response.json() # Adjust as per Groq's response format
|
31 |
+
else:
|
32 |
+
raise ValueError(f"Error fetching data from Groq API: {response.status_code}, {response.text}")
|
33 |
|
34 |
# Function to translate text into the selected language (async version)
|
35 |
async def translate_text(text, target_language):
|
|
|
91 |
with st.spinner("Fetching opportunities..."):
|
92 |
try:
|
93 |
# Get the opportunity details based on user query
|
94 |
+
opportunities_response = get_opportunities(user_query)
|
95 |
+
|
96 |
+
# Extract the response content, modify based on actual response format
|
97 |
+
opportunities_text = opportunities_response.get("choices", [{}])[0].get("message", {}).get("content", "No data found.")
|
98 |
|
99 |
# Run the async translate function and get the translated text
|
100 |
+
translated_opportunities = asyncio.run(translate_text(opportunities_text, languages[selected_language]))
|
101 |
|
102 |
# Append AI response to chat history
|
103 |
st.session_state.messages.append({"role": "ai", "content": translated_opportunities})
|