Health_advisor / app.py
saherPervaiz's picture
Update app.py
dbbe739 verified
raw
history blame
6.54 kB
import os
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import requests
from googleapiclient.discovery import build
from google.oauth2.credentials import Credentials
# News API Key
news_api_key = "AIzaSyAlvoXLqzqcZgVjhQeCNUsQgk6_SGHQNr8" # Replace with your News API key
@st.cache_data
def load_data(file):
return pd.read_csv(file)
def fetch_health_articles(query):
url = f"https://newsapi.org/v2/everything?q={query}&apiKey={news_api_key}"
response = requests.get(url)
if response.status_code == 200:
articles = response.json().get('articles', [])
return articles[:5]
else:
st.error("Failed to fetch news articles. Please check your API key or try again later.")
return []
def stress_level_to_string(stress_level):
"""Convert numerical stress level (0, 1, 2) to a string representation."""
if stress_level == 0:
return "Low"
elif stress_level == 1:
return "Moderate"
else:
return "High"
def provide_advice_from_articles(data):
advice = []
stress_level = stress_level_to_string(data['stress_level'])
if stress_level == "High":
advice.append("Searching for articles related to high stress...")
articles = fetch_health_articles("high stress")
for article in articles:
advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
elif stress_level == "Moderate":
advice.append("Searching for articles related to moderate stress...")
articles = fetch_health_articles("moderate stress")
for article in articles:
advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
else:
advice.append("Searching for articles related to low stress...")
articles = fetch_health_articles("low stress")
for article in articles:
advice.append(f"**{article['title']}**\n{article['description']}\n[Read more]({article['url']})")
return advice
def plot_graphs(data):
"""Create subplots for visualization."""
st.markdown("### πŸ“Š Data Visualizations")
st.write("Explore key insights through visualizations.")
# Correlation heatmap
st.markdown("#### Correlation Heatmap")
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, cmap="coolwarm", ax=ax)
ax.set_title("Correlation Heatmap")
st.pyplot(fig)
def main():
st.set_page_config(
page_title="Student Well-being Advisor",
page_icon="πŸ“Š",
layout="wide",
initial_sidebar_state="expanded",
)
st.sidebar.title("Navigation")
st.sidebar.write("Use the sidebar to navigate through the app.")
st.sidebar.markdown("### πŸ“‚ Upload Data")
st.sidebar.write("Start by uploading your dataset for analysis.")
st.sidebar.markdown("### πŸ“Š Analysis & Advice")
st.sidebar.write("Get detailed insights and personalized advice.")
st.title("πŸŽ“ Student Well-being Advisor")
st.subheader("Analyze data and provide professional mental health recommendations.")
st.write("""
This app helps identify areas of concern in students' well-being and provides personalized advice based on their responses.
""")
st.markdown("## πŸ“‚ Upload Your Dataset")
uploaded_file = st.file_uploader("Upload your dataset (CSV)", type=["csv"])
if uploaded_file:
df = load_data(uploaded_file)
st.success("Dataset uploaded successfully!")
st.write("### Dataset Preview:")
st.dataframe(df.head())
required_columns = [
'anxiety_level', 'self_esteem', 'mental_health_history', 'depression',
'headache', 'blood_pressure', 'sleep_quality', 'breathing_problem',
'noise_level', 'living_conditions', 'safety', 'basic_needs',
'academic_performance', 'study_load', 'teacher_student_relationship',
'future_career_concerns', 'social_support', 'peer_pressure',
'extracurricular_activities', 'bullying', 'stress_level'
]
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"The uploaded dataset is missing the following required columns: {', '.join(missing_columns)}")
else:
if df.isnull().values.any():
st.warning("The dataset contains missing values. Rows with missing values will be skipped.")
df = df.dropna()
tab1, tab2, tab3 = st.tabs(["🏠 Home", "πŸ“Š Analysis", "πŸ“° Resources"])
with tab1:
st.write("### Welcome to the Well-being Advisor!")
st.write("""
Use the tabs to explore data, generate advice, and access mental health resources.
""")
with tab2:
st.markdown("### πŸ“Š Select a Row for Analysis")
selected_row = st.selectbox(
"Select a row (based on index) to analyze:",
options=df.index,
format_func=lambda x: f"Row {x} - Stress Level: {stress_level_to_string(df.loc[x, 'stress_level'])}, Anxiety: {df.loc[x, 'anxiety_level']}, Depression: {df.loc[x, 'depression']}",
)
row_data = df.loc[selected_row].to_dict()
st.write("### Selected User Details:")
st.json(row_data)
st.subheader("πŸ”” Health Advice Based on Articles")
advice = provide_advice_from_articles(row_data)
if advice:
for i, tip in enumerate(advice, 1):
st.write(f"πŸ“Œ **{i}.** {tip}")
else:
st.warning("No specific advice available based on this user's data.")
# Include graphs in analysis tab
plot_graphs(df)
with tab3:
st.subheader("πŸ“° Mental Health Resources")
articles = fetch_health_articles("mental health")
if articles:
for article in articles:
st.write(f"**{article['title']}**")
st.write(f"{article['description']}")
st.write(f"[Read more]({article['url']})")
else:
st.write("No articles available at the moment.")
if __name__ == "__main__":
main()