Health_advisor / app.py
saherPervaiz's picture
Update app.py
80acb63 verified
raw
history blame
6.25 kB
import streamlit as st
import pandas as pd
import requests
import os
from google.cloud import language_v1
from google.oauth2 import service_account
# Set the API key for Google AI API (if not set in the environment variable)
api_key = "AIzaSyAlvoXLqzqcZgVjhQeCNUsQgk6_SGHQNr8" # Ensure your credentials are set up
# Initialize Google AI Client
client = language_v1.LanguageServiceClient(credentials=service_account.Credentials.from_service_account_file("path_to_your_service_account_json"))
# Function to load and preprocess data
@st.cache_data
def load_data(file):
df = pd.read_csv(file)
return df
# Function to fetch and analyze text using Google AI's Natural Language API
def analyze_text_with_google_ai(text):
document = language_v1.Document(content=text, type_=language_v1.Document.Type.PLAIN_TEXT)
response = client.analyze_sentiment(document=document)
sentiment_score = response.document_sentiment.score
sentiment_magnitude = response.document_sentiment.magnitude
# Example: Based on sentiment, provide advice
if sentiment_score < -0.5:
return "You may want to focus on activities that improve your mood, such as physical exercise, talking with a counselor, or engaging in mindfulness practices."
elif sentiment_score > 0.5:
return "It seems you're in a positive emotional state. Keep nurturing these positive habits, such as engaging in social activities and continuing to practice stress-relief strategies."
else:
return "You are in a neutral emotional state. Consider exploring activities that help enhance your mood, such as engaging in hobbies or relaxation exercises."
# Function to provide health advice based on user data and Google AI analysis
def provide_google_ai_advice(data):
advice = []
# Example of analysis based on Google AI's sentiment analysis
if data['depression'] > 7 or data['anxiety'] > 7:
advice.append("It seems you're experiencing high levels of depression or anxiety. It might be helpful to talk to a professional or consider engaging in activities that can reduce stress, like mindfulness or physical exercise.")
# Call Google AI for sentiment-based advice
user_data_summary = f"User's depression: {data['depression']}, anxiety: {data['anxiety']}, isolation: {data['isolation']}, future insecurity: {data['future_insecurity']}, stress-relief activities: {data['stress_relief_activities']}"
google_ai_advice = analyze_text_with_google_ai(user_data_summary)
advice.append(google_ai_advice)
return advice
# Function to fetch related health articles from GROC API (optional, for RAG-style application)
def get_health_articles(query):
url = f"https://api.groc.com/search?q={query}"
headers = {"Authorization": f"Bearer {api_key}"} # Replace with actual Google API key if required
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
data = response.json()
if 'results' in data:
articles = [{"title": item["title"], "url": item["url"]} for item in data['results']]
else:
articles = []
return articles
except requests.exceptions.RequestException as err:
st.error(f"Error fetching articles: {err}. Please check your internet connection.")
return []
# Streamlit app layout
def main():
# Set a background color and style
st.markdown(
"""
<style>
.stApp {
background-color: #F4F4F9;
}
.stButton>button {
background-color: #6200EE;
color: white;
font-size: 18px;
}
.stSlider>div>div>span {
color: #6200EE;
}
.stTextInput>div>div>input {
background-color: #E0E0E0;
}
</style>
""",
unsafe_allow_html=True
)
# Title and header
st.title("🌟 **Student Health Advisory Assistant** 🌟")
st.markdown("### **Analyze your well-being and get personalized advice**")
# File upload
uploaded_file = st.file_uploader("Upload your dataset (CSV)", type=["csv"])
if uploaded_file:
df = load_data(uploaded_file)
st.write("### Dataset Preview:")
st.dataframe(df.head())
# User input for analysis
st.markdown("### **Input Your Details**")
gender = st.selectbox("πŸ”Ή Gender", ["Male", "Female"], help="Select your gender.")
age = st.slider("πŸ”Ή Age", 18, 35, step=1)
depression = st.slider("πŸ”Ή Depression Level (1-10)", 1, 10)
anxiety = st.slider("πŸ”Ή Anxiety Level (1-10)", 1, 10)
isolation = st.slider("πŸ”Ή Isolation Level (1-10)", 1, 10)
future_insecurity = st.slider("πŸ”Ή Future Insecurity Level (1-10)", 1, 10)
stress_relief_activities = st.slider("πŸ”Ή Stress Relief Activities Level (1-10)", 1, 10)
# Data dictionary for advice
user_data = {
"gender": gender,
"age": age,
"depression": depression,
"anxiety": anxiety,
"isolation": isolation,
"future_insecurity": future_insecurity,
"stress_relief_activities": stress_relief_activities,
}
# Provide advice based on user inputs
if st.button("πŸ” Get Observed Advice", key="advice_btn"):
st.subheader("πŸ”” **Health Advice Based on Observations** πŸ””")
advice = provide_google_ai_advice(user_data)
if advice:
for i, tip in enumerate(advice, 1):
st.write(f"πŸ“Œ {i}. {tip}")
else:
st.warning("No advice available based on your inputs.")
# Fetch related health articles based on user input
st.subheader("πŸ“° **Related Health Articles** πŸ“°")
query = "mental health anxiety depression isolation stress relief"
articles = get_health_articles(query)
if articles:
for article in articles:
st.write(f"🌐 [{article['title']}]({article['url']})")
else:
st.write("No articles found. Please check your API key or internet connection.")
if __name__ == "__main__":
main()