Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import os
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
from groq import Groq
|
@@ -9,13 +8,9 @@ groq_api_key = "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"
|
|
9 |
# Initialize Groq client
|
10 |
client = Groq(api_key=groq_api_key)
|
11 |
|
12 |
-
|
13 |
-
def load_data(file):
|
14 |
-
return pd.read_csv(file)
|
15 |
-
|
16 |
def get_personalized_advice(user_data):
|
17 |
"""Fetch personalized advice using the Groq API based on user data"""
|
18 |
-
# Construct the query for the Groq API
|
19 |
query = f"Based on the user's data: anxiety level: {user_data['anxiety_level']}, self esteem: {user_data['self_esteem']}, mental health history: {user_data['mental_health_history']}, stress level: {user_data['stress_level']}, provide personalized mental health advice."
|
20 |
|
21 |
try:
|
@@ -37,92 +32,73 @@ def stress_level_to_string(stress_level):
|
|
37 |
else:
|
38 |
return "High"
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def main():
|
41 |
-
|
42 |
-
page_title="Student Well-being Advisor",
|
43 |
-
page_icon="π",
|
44 |
-
layout="wide",
|
45 |
-
initial_sidebar_state="expanded",
|
46 |
-
)
|
47 |
-
|
48 |
-
st.sidebar.title("Navigation")
|
49 |
-
st.sidebar.write("Use the sidebar to navigate through the app.")
|
50 |
-
st.sidebar.markdown("### π Upload Data")
|
51 |
-
st.sidebar.write("Start by uploading your dataset for analysis.")
|
52 |
-
st.sidebar.markdown("### π Analysis & Advice")
|
53 |
-
st.sidebar.write("Get detailed insights and personalized advice.")
|
54 |
-
|
55 |
-
st.title("π Student Well-being Advisor")
|
56 |
-
st.subheader("Analyze data and provide professional mental health recommendations.")
|
57 |
-
st.write("""
|
58 |
-
This app helps identify areas of concern in students' well-being and provides personalized advice based on their responses.
|
59 |
-
""")
|
60 |
-
|
61 |
-
# Dynamic Data Input
|
62 |
-
st.markdown("## π Enter Your Data")
|
63 |
-
st.write("Please fill out the form below to receive personalized well-being advice.")
|
64 |
-
|
65 |
-
# Alternative form inputs for user data
|
66 |
-
anxiety_level = st.text_input("Anxiety Level (1 to 10)", "5")
|
67 |
-
self_esteem = st.text_input("Self-esteem (1 to 10)", "5")
|
68 |
-
mental_health_history = st.selectbox("Mental Health History", ["None", "Minor Issues", "Moderate Issues", "Severe Issues"])
|
69 |
-
depression = st.text_input("Depression Level (1 to 10)", "5")
|
70 |
-
headache = st.text_input("Headache Level (1 to 10)", "5")
|
71 |
-
blood_pressure = st.text_input("Blood Pressure (1 to 10)", "5")
|
72 |
-
sleep_quality = st.text_input("Sleep Quality (1 to 10)", "5")
|
73 |
-
breathing_problem = st.selectbox("Breathing Problem", ["None", "Mild", "Severe"])
|
74 |
-
noise_level = st.text_input("Noise Level (1 to 10)", "5")
|
75 |
-
living_conditions = st.text_input("Living Conditions (1 to 10)", "5")
|
76 |
-
safety = st.text_input("Safety (1 to 10)", "5")
|
77 |
-
basic_needs = st.text_input("Basic Needs Satisfaction (1 to 10)", "5")
|
78 |
-
academic_performance = st.text_input("Academic Performance (1 to 10)", "5")
|
79 |
-
study_load = st.text_input("Study Load (1 to 10)", "5")
|
80 |
-
teacher_student_relationship = st.text_input("Teacher-Student Relationship (1 to 10)", "5")
|
81 |
-
future_career_concerns = st.text_input("Future Career Concerns (1 to 10)", "5")
|
82 |
-
social_support = st.text_input("Social Support (1 to 10)", "5")
|
83 |
-
peer_pressure = st.text_input("Peer Pressure (1 to 10)", "5")
|
84 |
-
extracurricular_activities = st.text_input("Extracurricular Activities (1 to 10)", "5")
|
85 |
-
bullying = st.text_input("Bullying Level (1 to 10)", "5")
|
86 |
-
stress_level = st.radio("Stress Level", [0, 1, 2], index=1)
|
87 |
-
|
88 |
-
# Convert text inputs to integers
|
89 |
-
try:
|
90 |
-
user_data = {
|
91 |
-
"anxiety_level": int(anxiety_level),
|
92 |
-
"self_esteem": int(self_esteem),
|
93 |
-
"mental_health_history": mental_health_history,
|
94 |
-
"depression": int(depression),
|
95 |
-
"headache": int(headache),
|
96 |
-
"blood_pressure": int(blood_pressure),
|
97 |
-
"sleep_quality": int(sleep_quality),
|
98 |
-
"breathing_problem": breathing_problem,
|
99 |
-
"noise_level": int(noise_level),
|
100 |
-
"living_conditions": int(living_conditions),
|
101 |
-
"safety": int(safety),
|
102 |
-
"basic_needs": int(basic_needs),
|
103 |
-
"academic_performance": int(academic_performance),
|
104 |
-
"study_load": int(study_load),
|
105 |
-
"teacher_student_relationship": int(teacher_student_relationship),
|
106 |
-
"future_career_concerns": int(future_career_concerns),
|
107 |
-
"social_support": int(social_support),
|
108 |
-
"peer_pressure": int(peer_pressure),
|
109 |
-
"extracurricular_activities": int(extracurricular_activities),
|
110 |
-
"bullying": int(bullying),
|
111 |
-
"stress_level": stress_level
|
112 |
-
}
|
113 |
-
except ValueError:
|
114 |
-
st.error("Please enter valid numeric values.")
|
115 |
-
return
|
116 |
-
|
117 |
-
st.write(f"### Selected User Data: {user_data}")
|
118 |
-
|
119 |
-
# Provide personalized advice
|
120 |
-
st.subheader("π Health Advice Based on Your Input")
|
121 |
-
advice = get_personalized_advice(user_data)
|
122 |
-
if advice:
|
123 |
-
st.write(advice)
|
124 |
-
else:
|
125 |
-
st.warning("No advice available at the moment.")
|
126 |
|
127 |
if __name__ == "__main__":
|
128 |
main()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from groq import Groq
|
|
|
8 |
# Initialize Groq client
|
9 |
client = Groq(api_key=groq_api_key)
|
10 |
|
11 |
+
# Define a function to fetch personalized advice using Groq API
|
|
|
|
|
|
|
12 |
def get_personalized_advice(user_data):
|
13 |
"""Fetch personalized advice using the Groq API based on user data"""
|
|
|
14 |
query = f"Based on the user's data: anxiety level: {user_data['anxiety_level']}, self esteem: {user_data['self_esteem']}, mental health history: {user_data['mental_health_history']}, stress level: {user_data['stress_level']}, provide personalized mental health advice."
|
15 |
|
16 |
try:
|
|
|
32 |
else:
|
33 |
return "High"
|
34 |
|
35 |
+
def chatbot_interface():
|
36 |
+
st.title("π Student Well-being Chatbot")
|
37 |
+
st.write("I can help you with personalized well-being advice based on your responses. Let's get started!")
|
38 |
+
|
39 |
+
# Initializing session state
|
40 |
+
if 'step' not in st.session_state:
|
41 |
+
st.session_state.step = 0
|
42 |
+
st.session_state.user_data = {}
|
43 |
+
|
44 |
+
def next_step():
|
45 |
+
st.session_state.step += 1
|
46 |
+
|
47 |
+
# Step 0: Welcome message and initial question
|
48 |
+
if st.session_state.step == 0:
|
49 |
+
st.write("Hi! I am your well-being assistant. I'll ask you some questions to understand how you're feeling.")
|
50 |
+
next_step_button = st.button("Start Chat")
|
51 |
+
if next_step_button:
|
52 |
+
next_step()
|
53 |
+
|
54 |
+
# Step 1: Ask for anxiety level
|
55 |
+
elif st.session_state.step == 1:
|
56 |
+
anxiety_level = st.text_input("On a scale of 1 to 10, how would you rate your anxiety level?", "")
|
57 |
+
if anxiety_level:
|
58 |
+
st.session_state.user_data['anxiety_level'] = int(anxiety_level)
|
59 |
+
next_step()
|
60 |
+
|
61 |
+
# Step 2: Ask for self-esteem
|
62 |
+
elif st.session_state.step == 2:
|
63 |
+
self_esteem = st.text_input("On a scale of 1 to 10, how would you rate your self-esteem?", "")
|
64 |
+
if self_esteem:
|
65 |
+
st.session_state.user_data['self_esteem'] = int(self_esteem)
|
66 |
+
next_step()
|
67 |
+
|
68 |
+
# Step 3: Ask for mental health history
|
69 |
+
elif st.session_state.step == 3:
|
70 |
+
mental_health_history = st.selectbox("How would you describe your mental health history?", ["None", "Minor Issues", "Moderate Issues", "Severe Issues"])
|
71 |
+
st.session_state.user_data['mental_health_history'] = mental_health_history
|
72 |
+
next_step()
|
73 |
+
|
74 |
+
# Step 4: Ask for stress level
|
75 |
+
elif st.session_state.step == 4:
|
76 |
+
stress_level = st.radio("On a scale of 0 to 2, how would you rate your stress level?", [0, 1, 2])
|
77 |
+
st.session_state.user_data['stress_level'] = stress_level
|
78 |
+
next_step()
|
79 |
+
|
80 |
+
# Step 5: Show advice based on user input
|
81 |
+
elif st.session_state.step == 5:
|
82 |
+
st.write("Thank you for providing the information!")
|
83 |
+
user_data = st.session_state.user_data
|
84 |
+
st.write(f"Your data: {user_data}")
|
85 |
+
|
86 |
+
st.subheader("π Personalized Health Advice")
|
87 |
+
advice = get_personalized_advice(user_data)
|
88 |
+
if advice:
|
89 |
+
st.write(advice)
|
90 |
+
else:
|
91 |
+
st.write("No advice available at the moment.")
|
92 |
+
|
93 |
+
# Option to restart the chat
|
94 |
+
restart_button = st.button("Restart Chat")
|
95 |
+
if restart_button:
|
96 |
+
st.session_state.step = 0
|
97 |
+
st.session_state.user_data = {}
|
98 |
+
|
99 |
+
# Main function to run the chatbot
|
100 |
def main():
|
101 |
+
chatbot_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
main()
|