File size: 2,580 Bytes
94516ce
0ab97c7
94516ce
 
 
9480219
94516ce
0ab97c7
94516ce
 
 
 
 
 
 
e92236a
8d505f4
e92236a
8d505f4
 
c045a8c
0ab97c7
e92236a
8d505f4
 
 
e92236a
8d505f4
 
94516ce
 
0ab97c7
e92236a
 
 
 
0ab97c7
 
 
 
 
51f6b7b
e92236a
0af8062
0ab97c7
e92236a
0ab97c7
e92236a
0ab97c7
 
94516ce
 
 
 
e92236a
 
8467e1e
 
 
0ab97c7
8467e1e
0ab97c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92236a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
import numpy as np
from text_extractor import extract_text_from_file
from embedder import get_embeddings
from vector_store import create_faiss_index, search_similar_cvs
from groq_api import summarize_match

# Global storage
cv_texts = []
cv_names = []
cv_vectors = []
faiss_index = None

def upload_cvs(files):
    global cv_texts, cv_names, cv_vectors, faiss_index

    try:
        cv_texts = [extract_text_from_file(f) for f in files]
        cv_names = [f.name for f in files]
        cv_vectors = get_embeddings(cv_texts)

        if cv_vectors is None or np.array(cv_vectors).size == 0:
            return "❌ No valid CVs."

        faiss_index = create_faiss_index(cv_vectors)
        return f"βœ… Uploaded and indexed {len(files)} CVs."

    except Exception as e:
        return f"❌ Error during upload: {e}"

def match_jd(jd_text):
    if faiss_index is None:
        return "❌ Please upload CVs first."
    if not jd_text.strip():
        return "⚠️ Job description is empty."

    try:
        jd_vector = get_embeddings([jd_text])[0]
        indices = search_similar_cvs(jd_vector, faiss_index, k=3)

        matched = [cv_names[i] for i in indices]
        texts = [cv_texts[i] for i in indices]


        summary = summarize_match(jd_text, matched, texts)

        return f"βœ… Top Matches:\n\n" + "\n".join(matched) + f"\n\nπŸ“ Summary:\n{summary}"

    except Exception as e:
        return f"❌ Error during matching: {e}"

def clear_data():
    global cv_texts, cv_names, cv_vectors, faiss_index
    cv_texts, cv_names, cv_vectors, faiss_index = [], [], [], None
    return "🧹 Cleared."

with gr.Blocks() as app:
    gr.Markdown("## πŸ“„ CV Matcher with Groq API")

    # Upload
    file_input = gr.File(file_types=[".pdf", ".docx"], file_count="multiple", label="πŸ“€ Upload CVs")
    upload_button = gr.Button("πŸ“ Upload & Index")
    upload_status = gr.Textbox(label="Upload Status")

    # Job Description Matching
    jd_input = gr.Textbox(label="πŸ“‹ Paste Job Description", lines=8, placeholder="Paste job description here...")
    match_button = gr.Button("πŸ” Match CVs")
    result_output = gr.Textbox(label="Match Results", lines=15)

    # Clear Session
    clear_button = gr.Button("🧹 Clear All")
    clear_status = gr.Textbox(label="Clear Status")

    # Actions
    upload_button.click(upload_cvs, inputs=[file_input], outputs=[upload_status])
    match_button.click(match_jd, inputs=[jd_input], outputs=[result_output])
    clear_button.click(clear_data, inputs=[], outputs=[clear_status])

app.launch()