Spaces:
Running
Running
File size: 2,537 Bytes
94516ce 9480219 94516ce 9480219 94516ce 8d505f4 c045a8c 9480219 8d505f4 94516ce 8d505f4 94516ce 8d505f4 94516ce 8d505f4 94516ce 8d505f4 4d83474 9480219 4d83474 8d505f4 9480219 8d505f4 94516ce 8d505f4 94516ce 8d505f4 94516ce 8d505f4 94516ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
# app.py
import os
import gradio as gr
from text_extractor import extract_text_from_file
from embedder import get_embeddings
from vector_store import create_faiss_index, search_similar_cvs
from groq_api import summarize_match
# Global storage
cv_texts = []
cv_names = []
cv_vectors = []
faiss_index = None
def upload_cvs(files):
global cv_texts, cv_names, cv_vectors, faiss_index
try:
cv_texts = [extract_text_from_file(f.name) for f in files]
cv_names = [f.name for f in files]
cv_vectors = get_embeddings(cv_texts)
import numpy as np
if cv_vectors is None or np.array(cv_vectors).size == 0:
return "β No valid CVs extracted or embedded."
faiss_index = create_faiss_index(cv_vectors)
return f"β
Uploaded and indexed {len(files)} CVs."
except Exception as e:
return f"β Error during upload: {e}"
def match_jd(jd_text):
global faiss_index
try:
if not faiss_index:
return "β Please upload CVs first."
if not jd_text.strip():
return "β Job description is empty."
jd_vector = get_embeddings([jd_text])[0]
top_k_indices = search_similar_cvs(jd_vector, faiss_index, k=3)
import os
matched_names = [os.path.basename(cv_names[i]) for i in top_k_indices]
matched_texts = [
cv_texts[i][:500] if cv_texts[i].strip() else "[No CV content]"
for i in top_k_indices
]
summary = summarize_match(jd_text, matched_names, matched_texts)
return f"β
Top Matches:\n{matched_names}\n\nπ Summary:\n{summary}"
except Exception as e:
return f"β Error during matching: {e}"
def clear_data():
global cv_texts, cv_names, cv_vectors, faiss_index
cv_texts, cv_names, cv_vectors, faiss_index = [], [], [], None
return "π§Ή Data cleared."
# Gradio Interfaces
iface = gr.Interface(
fn=match_jd,
inputs=[gr.Textbox(lines=10, label="Paste Job Description")],
outputs="text",
title="CV Matcher with Groq",
description="Upload CVs, enter a Job Description, and get top matches and summary."
)
upload = gr.Interface(
fn=upload_cvs,
inputs=gr.File(file_types=[".pdf", ".docx"], file_count="multiple"),
outputs="text",
title="Upload CVs"
)
clear = gr.Interface(fn=clear_data, inputs=[], outputs="text", title="Reset Data")
app = gr.TabbedInterface([upload, iface, clear], ["Upload CVs", "Match JD", "Clear Data"])
if __name__ == "__main__":
app.launch()
|