Spaces:
Sleeping
Sleeping
File size: 3,755 Bytes
94516ce 646e4f3 9480219 94516ce 9480219 94516ce 863e40a 94516ce 8d505f4 c045a8c 9480219 8d505f4 94516ce 8d505f4 94516ce 8d505f4 4d83474 9480219 4d83474 8d505f4 9480219 863e40a 8d505f4 863e40a 94516ce a69a9de 863e40a a69a9de 863e40a a69a9de 863e40a a69a9de 863e40a a69a9de 863e40a 94516ce a69a9de 94516ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
# app.py
import os
import gradio as gr
from text_extractor import extract_text_from_file
from embedder import get_embeddings
from vector_store import create_faiss_index, search_similar_cvs
from groq_api import summarize_match
# Global state
cv_texts = []
cv_names = []
cv_vectors = []
faiss_index = None
def upload_cvs(files):
global cv_texts, cv_names, cv_vectors, faiss_index
try:
cv_texts = [extract_text_from_file(f.name) for f in files]
cv_names = [f.name for f in files]
cv_vectors = get_embeddings(cv_texts)
import numpy as np
if cv_vectors is None or np.array(cv_vectors).size == 0:
return "β No valid CVs extracted or embedded."
faiss_index = create_faiss_index(cv_vectors)
return f"β
Uploaded and indexed {len(files)} CVs."
except Exception as e:
return f"β Error during upload: {e}"
def match_jd(jd_text):
global faiss_index
try:
if not faiss_index:
return "β Please upload CVs first."
if not jd_text.strip():
return "β Job description is empty."
jd_vector = get_embeddings([jd_text])[0]
top_k_indices = search_similar_cvs(jd_vector, faiss_index, k=3)
import os
matched_names = [os.path.basename(cv_names[i]) for i in top_k_indices]
matched_texts = [
cv_texts[i][:500] if cv_texts[i].strip() else "[No CV content]"
for i in top_k_indices
]
summary = summarize_match(jd_text, matched_names, matched_texts)
return f"""
β
<span style='color:#16a34a; font-weight:bold;'>Top Matches:</span><br>{matched_names}<br><br>
π <span style='color:#3b82f6; font-weight:bold;'>Summary:</span><br>{summary}
"""
except Exception as e:
return f"<span style='color:red;'>β Error during matching: {e}</span>"
def clear_data():
global cv_texts, cv_names, cv_vectors, faiss_index
cv_texts, cv_names, cv_vectors, faiss_index = [], [], [], None
return "π§Ή All data cleared. You can now start fresh."
# ======================
# TABBED PROFESSIONAL UI
# ======================
with gr.Blocks(css="""
.gr-button { background-color: #2563eb; color: white; font-weight: bold; }
.gr-button:hover { background-color: #1d4ed8; }
textarea, input[type='file'] { border: 2px solid #3b82f6 !important; }
.gr-textbox label { color: #111827; font-weight: 600; }
""") as upload_tab:
gr.Markdown("## π€ Upload CVs")
gr.Markdown("Upload candidate CVs in PDF or DOCX format.")
cv_upload = gr.File(label="Upload CVs", file_types=[".pdf", ".docx"], file_count="multiple")
upload_button = gr.Button("π Upload & Index CVs")
upload_status = gr.Textbox(label="Status", interactive=False)
upload_button.click(upload_cvs, inputs=[cv_upload], outputs=[upload_status])
with gr.Blocks() as match_tab:
gr.Markdown("## π Match Job Description to CVs")
jd_input = gr.Textbox(label="Paste Job Description", lines=8, placeholder="e.g. Looking for a Python Data Analyst...")
match_button = gr.Button("π Match CVs")
match_result = gr.HTML()
match_button.click(match_jd, inputs=[jd_input], outputs=[match_result])
with gr.Blocks() as reset_tab:
gr.Markdown("## π§Ή Clear All Data")
gr.Markdown("Click below to reset the app and upload new CVs.")
clear_button = gr.Button("Reset App")
clear_output = gr.Textbox(label="Reset Status", interactive=False)
clear_button.click(clear_data, inputs=[], outputs=[clear_output])
# Menu Bar Style Tabs
app = gr.TabbedInterface(
interface_list=[upload_tab, match_tab, reset_tab],
tab_names=["π€ Upload CVs", "π Match JD", "π§Ή Reset"]
)
if __name__ == "__main__":
app.launch()
|