File size: 3,168 Bytes
94516ce
646e4f3
9480219
94516ce
 
 
 
9480219
94516ce
 
 
 
 
 
 
 
 
 
8d505f4
 
 
 
c045a8c
9480219
 
8d505f4
 
 
 
 
 
94516ce
 
8d505f4
94516ce
8d505f4
 
 
94516ce
8d505f4
 
94516ce
8d505f4
 
 
4d83474
9480219
4d83474
 
 
 
8d505f4
9480219
8d505f4
 
 
 
94516ce
 
 
 
646e4f3
 
 
 
d64f98a
646e4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94516ce
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# app.py

import os
import gradio as gr
from text_extractor import extract_text_from_file
from embedder import get_embeddings
from vector_store import create_faiss_index, search_similar_cvs
from groq_api import summarize_match

# Global storage
cv_texts = []
cv_names = []
cv_vectors = []
faiss_index = None

def upload_cvs(files):
    global cv_texts, cv_names, cv_vectors, faiss_index

    try:
        cv_texts = [extract_text_from_file(f.name) for f in files]
        cv_names = [f.name for f in files]
        cv_vectors = get_embeddings(cv_texts)

        import numpy as np
        if cv_vectors is None or np.array(cv_vectors).size == 0:
            return "❌ No valid CVs extracted or embedded."

        faiss_index = create_faiss_index(cv_vectors)
        return f"βœ… Uploaded and indexed {len(files)} CVs."
    except Exception as e:
        return f"❌ Error during upload: {e}"

def match_jd(jd_text):
    global faiss_index

    try:
        if not faiss_index:
            return "❌ Please upload CVs first."

        if not jd_text.strip():
            return "❌ Job description is empty."

        jd_vector = get_embeddings([jd_text])[0]
        top_k_indices = search_similar_cvs(jd_vector, faiss_index, k=3)

        import os
        matched_names = [os.path.basename(cv_names[i]) for i in top_k_indices]
        matched_texts = [
            cv_texts[i][:500] if cv_texts[i].strip() else "[No CV content]"
            for i in top_k_indices
        ]

        summary = summarize_match(jd_text, matched_names, matched_texts)
        return f"βœ… Top Matches:\n{matched_names}\n\nπŸ“ Summary:\n{summary}"

    except Exception as e:
        return f"❌ Error during matching: {e}"

def clear_data():
    global cv_texts, cv_names, cv_vectors, faiss_index
    cv_texts, cv_names, cv_vectors, faiss_index = [], [], [], None
    return "🧹 All data cleared. You can now start fresh."

# 🌟 Redesigned Gradio Interface with Blocks
with gr.Blocks() as app:
    gr.Markdown("## πŸ“„ CV Matcher App")
    gr.Markdown("Upload candidate CVs, enter a job description, and let AI find the top matches using Groq + FAISS.")

    with gr.Row():
        cv_upload = gr.File(label="πŸ“€ Upload CVs (PDF/DOCX)", file_types=[".pdf", ".docx"], file_count="multiple")
        upload_button = gr.Button("πŸ“ Upload & Index CVs")
        upload_status = gr.Textbox(label="Upload Status", interactive=False)

    with gr.Row():
        jd_input = gr.Textbox(label="πŸ“‹ Paste Job Description", lines=8, placeholder="Enter the job description here...")
        match_button = gr.Button("πŸ” Match CVs")
    
    match_result = gr.Textbox(label="πŸ“Š Matching Result & Summary", lines=12, interactive=False)

    with gr.Row():
        clear_button = gr.Button("🧹 Clear All")
        clear_output = gr.Textbox(label="Status", interactive=False)

    # Function bindings
    upload_button.click(fn=upload_cvs, inputs=[cv_upload], outputs=[upload_status])
    match_button.click(fn=match_jd, inputs=[jd_input], outputs=[match_result])
    clear_button.click(fn=clear_data, inputs=[], outputs=[clear_output])

if __name__ == "__main__":
    app.launch()