Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
from text_extractor import extract_text_from_file | |
from embedder import get_embeddings | |
from vector_store import create_faiss_index, search_similar_cvs | |
from groq_api import summarize_match | |
# Global storage | |
cv_texts = [] | |
cv_names = [] | |
cv_vectors = [] | |
faiss_index = None | |
def upload_cvs(files): | |
global cv_texts, cv_names, cv_vectors, faiss_index | |
try: | |
if len(files) > 10: | |
return "β Limit exceeded: Upload a maximum of 10 CVs." | |
# Remove duplicates based on filename | |
unique_files = [] | |
seen = set() | |
for f in files: | |
if f.name not in seen: | |
seen.add(f.name) | |
unique_files.append(f) | |
files = unique_files | |
cv_texts = [extract_text_from_file(f) for f in files] | |
cv_names = [f.name for f in files] | |
cv_vectors = get_embeddings(cv_texts) | |
if cv_vectors is None or np.array(cv_vectors).size == 0: | |
return "β No valid CVs." | |
faiss_index = create_faiss_index(cv_vectors) | |
return f"β Uploaded and indexed {len(files)} CV(s)." | |
except Exception as e: | |
return f"β Error during upload: {e}" | |
def match_jd(jd_text, match_mode): | |
if faiss_index is None: | |
return "β Please upload CVs first." | |
if not jd_text.strip(): | |
return "β οΈ Job description is empty." | |
try: | |
jd_vector = get_embeddings([jd_text])[0] | |
# Select CVs based on match mode | |
if match_mode == "Top 3 Matches": | |
indices = search_similar_cvs(jd_vector, faiss_index, k=3) | |
else: # All uploaded CVs | |
indices = list(range(len(cv_names))) | |
# Filter duplicates by name | |
seen = set() | |
unique_indices = [] | |
for i in indices: | |
if cv_names[i] not in seen: | |
seen.add(cv_names[i]) | |
unique_indices.append(i) | |
matched = [cv_names[i] for i in unique_indices] | |
texts = [cv_texts[i] for i in unique_indices] | |
summary = summarize_match(jd_text, matched, texts) | |
title = "β Match Result:" if len(matched) == 1 else f"β Matching {len(matched)} CVs:" | |
return f"{title}\n\n" + "\n".join(matched) + f"\n\nπ Summary:\n{summary}" | |
except Exception as e: | |
return f"β Error during matching: {e}" | |
def clear_data(): | |
global cv_texts, cv_names, cv_vectors, faiss_index | |
cv_texts, cv_names, cv_vectors, faiss_index = [], [], [], None | |
return "π§Ή Cleared." | |
with gr.Blocks() as app: | |
gr.Markdown("## π CV Matcher with Groq API (Dynamic Matching)") | |
# Upload | |
file_input = gr.File(file_types=[".pdf", ".docx"], file_count="multiple", label="π€ Upload CVs (Max 10)") | |
upload_button = gr.Button("π Upload & Index") | |
upload_status = gr.Textbox(label="Upload Status") | |
# Job Description Matching | |
jd_input = gr.Textbox(label="π Paste Job Description", lines=8, placeholder="Paste job description here...") | |
match_mode = gr.Radio(["Top 3 Matches", "All Uploaded CVs"], value="Top 3 Matches", label="Matching Mode") | |
match_button = gr.Button("π Match CVs") | |
result_output = gr.Textbox(label="Match Results", lines=25) | |
# Clear Session | |
clear_button = gr.Button("π§Ή Clear All") | |
clear_status = gr.Textbox(label="Clear Status") | |
# Actions | |
upload_button.click(upload_cvs, inputs=[file_input], outputs=[upload_status]) | |
match_button.click(match_jd, inputs=[jd_input, match_mode], outputs=[result_output]) | |
clear_button.click(clear_data, inputs=[], outputs=[clear_status]) | |
app.launch() | |