Spaces:
Sleeping
Sleeping
Update embedder.py
Browse files- embedder.py +39 -9
embedder.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
-
# embedder.py
|
2 |
-
|
3 |
from transformers import AutoTokenizer, AutoModel
|
4 |
import torch
|
|
|
5 |
|
6 |
# Use a model with PyTorch weights available
|
7 |
MODEL_NAME = "thenlper/gte-small"
|
@@ -9,11 +8,42 @@ MODEL_NAME = "thenlper/gte-small"
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
10 |
model = AutoModel.from_pretrained(MODEL_NAME)
|
11 |
|
12 |
-
def get_embeddings(texts):
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
embeddings = model_output.last_hidden_state.mean(dim=1)
|
19 |
-
return embeddings.numpy()
|
|
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModel
|
2 |
import torch
|
3 |
+
import numpy as np
|
4 |
|
5 |
# Use a model with PyTorch weights available
|
6 |
MODEL_NAME = "thenlper/gte-small"
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
model = AutoModel.from_pretrained(MODEL_NAME)
|
10 |
|
11 |
+
def get_embeddings(texts, max_length=512):
|
12 |
+
"""
|
13 |
+
Generate embeddings for long text by chunking and averaging.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
texts (str or list): One or multiple texts to embed.
|
17 |
+
max_length (int): Maximum tokens per chunk (default is 512).
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
np.ndarray: Averaged embeddings.
|
21 |
+
"""
|
22 |
+
if isinstance(texts, str):
|
23 |
+
texts = [texts]
|
24 |
+
|
25 |
+
final_embeddings = []
|
26 |
+
|
27 |
+
for text in texts:
|
28 |
+
# Tokenize and split into chunks
|
29 |
+
tokens = tokenizer.tokenize(text)
|
30 |
+
chunks = [tokens[i:i + max_length] for i in range(0, len(tokens), max_length)]
|
31 |
+
|
32 |
+
chunk_embeddings = []
|
33 |
+
|
34 |
+
for chunk in chunks:
|
35 |
+
input_ids = tokenizer.convert_tokens_to_ids(chunk)
|
36 |
+
input_ids = torch.tensor([input_ids])
|
37 |
+
with torch.no_grad():
|
38 |
+
output = model(input_ids=input_ids)
|
39 |
+
embedding = output.last_hidden_state.mean(dim=1) # Mean pooling
|
40 |
+
chunk_embeddings.append(embedding)
|
41 |
+
|
42 |
+
# Average embeddings of all chunks
|
43 |
+
if chunk_embeddings:
|
44 |
+
avg_embedding = torch.stack(chunk_embeddings).mean(dim=0)
|
45 |
+
final_embeddings.append(avg_embedding.squeeze(0).numpy())
|
46 |
+
else:
|
47 |
+
final_embeddings.append(np.zeros(model.config.hidden_size))
|
48 |
|
49 |
+
return np.array(final_embeddings)
|
|
|
|