Spaces:
Sleeping
Sleeping
Update embedder.py
Browse files- embedder.py +14 -3
embedder.py
CHANGED
@@ -1,8 +1,19 @@
|
|
1 |
# embedder.py
|
2 |
|
3 |
-
from
|
|
|
4 |
|
5 |
-
model
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def get_embeddings(texts):
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# embedder.py
|
2 |
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
import torch
|
5 |
|
6 |
+
# Use a model with PyTorch weights available
|
7 |
+
MODEL_NAME = "thenlper/gte-small"
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
10 |
+
model = AutoModel.from_pretrained(MODEL_NAME)
|
11 |
|
12 |
def get_embeddings(texts):
|
13 |
+
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
14 |
+
with torch.no_grad():
|
15 |
+
model_output = model(**inputs)
|
16 |
+
|
17 |
+
# Mean Pooling
|
18 |
+
embeddings = model_output.last_hidden_state.mean(dim=1)
|
19 |
+
return embeddings.numpy()
|