Spaces:
Runtime error
Runtime error
shift to ffmpeg
Browse files- app.py +108 -98
- myapp2.py +204 -0
- packages.txt +1 -0
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
import os
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
|
@@ -10,6 +9,7 @@ from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
| 10 |
import cv2
|
| 11 |
import traceback
|
| 12 |
import matplotlib.pyplot as plt
|
|
|
|
| 13 |
from utils import load_model_without_flash_attn
|
| 14 |
|
| 15 |
|
|
@@ -62,7 +62,7 @@ def apply_color_mask(frame, mask, obj_id):
|
|
| 62 |
return frame * (1 - mask) + colored_mask * 255
|
| 63 |
|
| 64 |
def run_florence(image, text_input):
|
| 65 |
-
with torch.
|
| 66 |
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
| 67 |
prompt = task_prompt + text_input
|
| 68 |
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.bfloat16)
|
|
@@ -89,125 +89,135 @@ def remove_directory_contents(directory):
|
|
| 89 |
for name in dirs:
|
| 90 |
os.rmdir(os.path.join(root, name))
|
| 91 |
|
| 92 |
-
|
|
|
|
| 93 |
try:
|
| 94 |
-
video
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
|
|
|
| 100 |
|
| 101 |
-
#
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
point_labels=None,
|
| 133 |
-
box=mask_box[None, :],
|
| 134 |
-
multimask_output=False,
|
| 135 |
-
)
|
| 136 |
-
print("masks.shape",masks.shape)
|
| 137 |
-
|
| 138 |
-
mask = masks.squeeze().astype(bool)
|
| 139 |
-
print("Mask shape:", mask.shape)
|
| 140 |
-
print("Frame shape:", frames[0].shape)
|
| 141 |
-
|
| 142 |
-
# SAM2 video propagation
|
| 143 |
-
temp_dir = f"temp_frames_{chunk_start}"
|
| 144 |
-
os.makedirs(temp_dir, exist_ok=True)
|
| 145 |
-
for i, frame in enumerate(frames):
|
| 146 |
-
cv2.imwrite(os.path.join(temp_dir, f"{i:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
| 147 |
-
|
| 148 |
-
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 149 |
-
inference_state = video_predictor.init_state(video_path=temp_dir)
|
| 150 |
-
_, _, _ = video_predictor.add_new_mask(
|
| 151 |
-
inference_state=inference_state,
|
| 152 |
-
frame_idx=0,
|
| 153 |
-
obj_id=1,
|
| 154 |
-
mask=mask
|
| 155 |
-
)
|
| 156 |
-
|
| 157 |
-
video_segments = {}
|
| 158 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
|
| 159 |
-
video_segments[out_frame_idx] = {
|
| 160 |
-
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 161 |
-
for i, out_obj_id in enumerate(out_obj_ids)
|
| 162 |
-
}
|
| 163 |
-
|
| 164 |
-
print('segmenting for main vid done')
|
| 165 |
-
|
| 166 |
-
# Apply segmentation masks to frames
|
| 167 |
-
for i, frame in enumerate(frames):
|
| 168 |
-
if i in video_segments:
|
| 169 |
-
for out_obj_id, mask in video_segments[i].items():
|
| 170 |
-
frame = apply_color_mask(frame, mask, out_obj_id)
|
| 171 |
-
all_segmented_frames.append(frame.astype(np.uint8))
|
| 172 |
-
else:
|
| 173 |
-
all_segmented_frames.append(frame)
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
| 185 |
output_path = "segmented_video.mp4"
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
for frame in all_segmented_frames:
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
return output_path
|
| 193 |
|
| 194 |
except Exception as e:
|
| 195 |
print(f"Error in process_video: {str(e)}")
|
| 196 |
print(traceback.format_exc()) # This will print the full stack trace
|
| 197 |
return None
|
| 198 |
-
|
| 199 |
-
def segment_video(video_file, prompt
|
| 200 |
if video_file is None:
|
| 201 |
return None
|
| 202 |
-
output_video = process_video(video_file, prompt
|
| 203 |
return output_video
|
| 204 |
|
| 205 |
demo = gr.Interface(
|
| 206 |
fn=segment_video,
|
| 207 |
inputs=[
|
| 208 |
gr.Video(label="Upload Video"),
|
| 209 |
-
gr.Textbox(label="Enter prompt (e.g., 'a gymnast')")
|
| 210 |
-
gr.Slider(minimum=10, maximum=100, step=10, value=30, label="Chunk Size (frames)")
|
| 211 |
],
|
| 212 |
outputs=gr.Video(label="Segmented Video"),
|
| 213 |
title="Video Object Segmentation with Florence and SAM2",
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
|
|
|
| 9 |
import cv2
|
| 10 |
import traceback
|
| 11 |
import matplotlib.pyplot as plt
|
| 12 |
+
import ffmpeg
|
| 13 |
from utils import load_model_without_flash_attn
|
| 14 |
|
| 15 |
|
|
|
|
| 62 |
return frame * (1 - mask) + colored_mask * 255
|
| 63 |
|
| 64 |
def run_florence(image, text_input):
|
| 65 |
+
with torch.amp.autocast(dtype=torch.bfloat16):
|
| 66 |
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
| 67 |
prompt = task_prompt + text_input
|
| 68 |
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.bfloat16)
|
|
|
|
| 89 |
for name in dirs:
|
| 90 |
os.rmdir(os.path.join(root, name))
|
| 91 |
|
| 92 |
+
|
| 93 |
+
def process_video(video_path, prompt):
|
| 94 |
try:
|
| 95 |
+
# Get video info
|
| 96 |
+
probe = ffmpeg.probe(video_path)
|
| 97 |
+
video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video')
|
| 98 |
+
width = int(video_info['width'])
|
| 99 |
+
height = int(video_info['height'])
|
| 100 |
+
num_frames = int(video_info['nb_frames'])
|
| 101 |
+
fps = eval(video_info['r_frame_rate'])
|
| 102 |
+
|
| 103 |
+
print(f"Video info: {width}x{height}, {num_frames} frames, {fps} fps")
|
| 104 |
+
|
| 105 |
+
# Read frames
|
| 106 |
+
out, _ = (
|
| 107 |
+
ffmpeg
|
| 108 |
+
.input(video_path)
|
| 109 |
+
.output('pipe:', format='rawvideo', pix_fmt='rgb24')
|
| 110 |
+
.run(capture_stdout=True)
|
| 111 |
+
)
|
| 112 |
+
frames = np.frombuffer(out, np.uint8).reshape([-1, height, width, 3])
|
| 113 |
+
|
| 114 |
+
print(f"Read {len(frames)} frames")
|
| 115 |
+
|
| 116 |
+
# Florence detection on first frame
|
| 117 |
+
first_frame = Image.fromarray(frames[0])
|
| 118 |
+
mask_box = run_florence(first_frame, prompt)
|
| 119 |
+
print("Original mask box:", mask_box)
|
| 120 |
|
| 121 |
+
# Convert mask_box to numpy array
|
| 122 |
+
mask_box = np.array(mask_box)
|
| 123 |
+
print("Reshaped mask box:", mask_box)
|
| 124 |
|
| 125 |
+
# SAM2 segmentation on first frame
|
| 126 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 127 |
+
image_predictor.set_image(first_frame)
|
| 128 |
+
masks, _, _ = image_predictor.predict(
|
| 129 |
+
point_coords=None,
|
| 130 |
+
point_labels=None,
|
| 131 |
+
box=mask_box[None, :],
|
| 132 |
+
multimask_output=False,
|
| 133 |
+
)
|
| 134 |
+
print("masks.shape", masks.shape)
|
| 135 |
+
|
| 136 |
+
mask = masks.squeeze().astype(bool)
|
| 137 |
+
print("Mask shape:", mask.shape)
|
| 138 |
+
print("Frame shape:", frames[0].shape)
|
| 139 |
+
|
| 140 |
+
# SAM2 video propagation
|
| 141 |
+
temp_dir = "temp_frames"
|
| 142 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 143 |
+
for i, frame in enumerate(frames):
|
| 144 |
+
Image.fromarray(frame).save(os.path.join(temp_dir, f"{i:04d}.jpg"))
|
| 145 |
+
|
| 146 |
+
print(f"Saved {len(frames)} temporary frames")
|
| 147 |
+
|
| 148 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 149 |
+
inference_state = video_predictor.init_state(video_path=temp_dir)
|
| 150 |
+
_, _, _ = video_predictor.add_new_mask(
|
| 151 |
+
inference_state=inference_state,
|
| 152 |
+
frame_idx=0,
|
| 153 |
+
obj_id=1,
|
| 154 |
+
mask=mask
|
| 155 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
+
video_segments = {}
|
| 158 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
|
| 159 |
+
video_segments[out_frame_idx] = {
|
| 160 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 161 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
print('Segmenting for main vid done')
|
| 165 |
+
print(f"Number of segmented frames: {len(video_segments)}")
|
| 166 |
|
| 167 |
+
# Apply segmentation masks to frames
|
| 168 |
+
all_segmented_frames = []
|
| 169 |
+
for i, frame in enumerate(frames):
|
| 170 |
+
if i in video_segments:
|
| 171 |
+
for out_obj_id, mask in video_segments[i].items():
|
| 172 |
+
frame = apply_color_mask(frame, mask, out_obj_id)
|
| 173 |
+
all_segmented_frames.append(frame.astype(np.uint8))
|
| 174 |
+
else:
|
| 175 |
+
all_segmented_frames.append(frame)
|
| 176 |
|
| 177 |
+
print(f"Applied masks to {len(all_segmented_frames)} frames")
|
| 178 |
+
|
| 179 |
+
# Clean up temporary files
|
| 180 |
+
remove_directory_contents(temp_dir)
|
| 181 |
+
os.rmdir(temp_dir)
|
| 182 |
+
|
| 183 |
+
# Write output video using ffmpeg
|
| 184 |
output_path = "segmented_video.mp4"
|
| 185 |
+
process = (
|
| 186 |
+
ffmpeg
|
| 187 |
+
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{width}x{height}', r=fps)
|
| 188 |
+
.output(output_path, pix_fmt='yuv420p')
|
| 189 |
+
.overwrite_output()
|
| 190 |
+
.run_async(pipe_stdin=True)
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
for frame in all_segmented_frames:
|
| 194 |
+
process.stdin.write(frame.tobytes())
|
| 195 |
+
|
| 196 |
+
process.stdin.close()
|
| 197 |
+
process.wait()
|
| 198 |
|
| 199 |
+
if not os.path.exists(output_path):
|
| 200 |
+
raise ValueError(f"Output video file was not created: {output_path}")
|
| 201 |
+
|
| 202 |
+
print(f"Successfully created output video: {output_path}")
|
| 203 |
return output_path
|
| 204 |
|
| 205 |
except Exception as e:
|
| 206 |
print(f"Error in process_video: {str(e)}")
|
| 207 |
print(traceback.format_exc()) # This will print the full stack trace
|
| 208 |
return None
|
| 209 |
+
|
| 210 |
+
def segment_video(video_file, prompt):
|
| 211 |
if video_file is None:
|
| 212 |
return None
|
| 213 |
+
output_video = process_video(video_file, prompt)
|
| 214 |
return output_video
|
| 215 |
|
| 216 |
demo = gr.Interface(
|
| 217 |
fn=segment_video,
|
| 218 |
inputs=[
|
| 219 |
gr.Video(label="Upload Video"),
|
| 220 |
+
gr.Textbox(label="Enter prompt (e.g., 'a gymnast')")
|
|
|
|
| 221 |
],
|
| 222 |
outputs=gr.Video(label="Segmented Video"),
|
| 223 |
title="Video Object Segmentation with Florence and SAM2",
|
myapp2.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 7 |
+
from sam2.build_sam import build_sam2_video_predictor, build_sam2
|
| 8 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 9 |
+
import cv2
|
| 10 |
+
import traceback
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
|
| 13 |
+
# CUDA optimizations
|
| 14 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
| 15 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
| 16 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 17 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 18 |
+
|
| 19 |
+
# Initialize models
|
| 20 |
+
sam2_checkpoint = "../checkpoints/sam2_hiera_large.pt"
|
| 21 |
+
model_cfg = "sam2_hiera_l.yaml"
|
| 22 |
+
|
| 23 |
+
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
| 24 |
+
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
| 25 |
+
image_predictor = SAM2ImagePredictor(sam2_model)
|
| 26 |
+
|
| 27 |
+
model_id = 'microsoft/Florence-2-large'
|
| 28 |
+
florence_model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.bfloat16).eval().cuda()
|
| 29 |
+
florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 30 |
+
|
| 31 |
+
def apply_color_mask(frame, mask, obj_id):
|
| 32 |
+
cmap = plt.get_cmap("tab10")
|
| 33 |
+
color = np.array(cmap(obj_id % 10)[:3]) # Use modulo 10 to cycle through colors
|
| 34 |
+
|
| 35 |
+
# Ensure mask has the correct shape
|
| 36 |
+
if mask.ndim == 4:
|
| 37 |
+
mask = mask.squeeze() # Remove singleton dimensions
|
| 38 |
+
if mask.ndim == 3 and mask.shape[0] == 1:
|
| 39 |
+
mask = mask[0] # Take the first channel if it's a single-channel 3D array
|
| 40 |
+
|
| 41 |
+
# Reshape mask to match frame dimensions
|
| 42 |
+
mask = cv2.resize(mask.astype(np.float32), (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LINEAR)
|
| 43 |
+
|
| 44 |
+
# Expand dimensions of mask and color for broadcasting
|
| 45 |
+
mask = np.expand_dims(mask, axis=2)
|
| 46 |
+
color = color.reshape(1, 1, 3)
|
| 47 |
+
|
| 48 |
+
colored_mask = mask * color
|
| 49 |
+
return frame * (1 - mask) + colored_mask * 255
|
| 50 |
+
|
| 51 |
+
def run_florence(image, text_input):
|
| 52 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 53 |
+
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
| 54 |
+
prompt = task_prompt + text_input
|
| 55 |
+
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.bfloat16)
|
| 56 |
+
generated_ids = florence_model.generate(
|
| 57 |
+
input_ids=inputs["input_ids"].cuda(),
|
| 58 |
+
pixel_values=inputs["pixel_values"].cuda(),
|
| 59 |
+
max_new_tokens=1024,
|
| 60 |
+
early_stopping=False,
|
| 61 |
+
do_sample=False,
|
| 62 |
+
num_beams=3,
|
| 63 |
+
)
|
| 64 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 65 |
+
parsed_answer = florence_processor.post_process_generation(
|
| 66 |
+
generated_text,
|
| 67 |
+
task=task_prompt,
|
| 68 |
+
image_size=(image.width, image.height)
|
| 69 |
+
)
|
| 70 |
+
return parsed_answer[task_prompt]['bboxes'][0]
|
| 71 |
+
|
| 72 |
+
def remove_directory_contents(directory):
|
| 73 |
+
for root, dirs, files in os.walk(directory, topdown=False):
|
| 74 |
+
for name in files:
|
| 75 |
+
os.remove(os.path.join(root, name))
|
| 76 |
+
for name in dirs:
|
| 77 |
+
os.rmdir(os.path.join(root, name))
|
| 78 |
+
|
| 79 |
+
def process_video(video_path, prompt, chunk_size=30):
|
| 80 |
+
try:
|
| 81 |
+
video = cv2.VideoCapture(video_path)
|
| 82 |
+
if not video.isOpened():
|
| 83 |
+
raise ValueError("Unable to open video file")
|
| 84 |
+
|
| 85 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
| 86 |
+
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 87 |
+
|
| 88 |
+
# Process video in chunks
|
| 89 |
+
all_segmented_frames = []
|
| 90 |
+
for chunk_start in range(0, frame_count, chunk_size):
|
| 91 |
+
chunk_end = min(chunk_start + chunk_size, frame_count)
|
| 92 |
+
|
| 93 |
+
frames = []
|
| 94 |
+
video.set(cv2.CAP_PROP_POS_FRAMES, chunk_start)
|
| 95 |
+
for _ in range(chunk_end - chunk_start):
|
| 96 |
+
ret, frame = video.read()
|
| 97 |
+
if not ret:
|
| 98 |
+
break
|
| 99 |
+
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 100 |
+
|
| 101 |
+
if not frames:
|
| 102 |
+
print(f"No frames extracted for chunk starting at {chunk_start}")
|
| 103 |
+
continue
|
| 104 |
+
|
| 105 |
+
# Florence detection on first frame of the chunk
|
| 106 |
+
first_frame = Image.fromarray(frames[0])
|
| 107 |
+
mask_box = run_florence(first_frame, prompt)
|
| 108 |
+
print("Original mask box:", mask_box)
|
| 109 |
+
|
| 110 |
+
# Convert mask_box to numpy array and ensure it's in the correct format
|
| 111 |
+
mask_box = np.array(mask_box)
|
| 112 |
+
print("Reshaped mask box:", mask_box)
|
| 113 |
+
|
| 114 |
+
# SAM2 segmentation on first frame
|
| 115 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 116 |
+
image_predictor.set_image(first_frame)
|
| 117 |
+
masks, _, _ = image_predictor.predict(
|
| 118 |
+
point_coords=None,
|
| 119 |
+
point_labels=None,
|
| 120 |
+
box=mask_box[None, :],
|
| 121 |
+
multimask_output=False,
|
| 122 |
+
)
|
| 123 |
+
print("masks.shape",masks.shape)
|
| 124 |
+
|
| 125 |
+
mask = masks.squeeze().astype(bool)
|
| 126 |
+
print("Mask shape:", mask.shape)
|
| 127 |
+
print("Frame shape:", frames[0].shape)
|
| 128 |
+
|
| 129 |
+
# SAM2 video propagation
|
| 130 |
+
temp_dir = f"temp_frames_{chunk_start}"
|
| 131 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 132 |
+
for i, frame in enumerate(frames):
|
| 133 |
+
cv2.imwrite(os.path.join(temp_dir, f"{i:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
| 134 |
+
|
| 135 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 136 |
+
inference_state = video_predictor.init_state(video_path=temp_dir)
|
| 137 |
+
_, _, _ = video_predictor.add_new_mask(
|
| 138 |
+
inference_state=inference_state,
|
| 139 |
+
frame_idx=0,
|
| 140 |
+
obj_id=1,
|
| 141 |
+
mask=mask
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
video_segments = {}
|
| 145 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
|
| 146 |
+
video_segments[out_frame_idx] = {
|
| 147 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
| 148 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
print('segmenting for main vid done')
|
| 152 |
+
|
| 153 |
+
# Apply segmentation masks to frames
|
| 154 |
+
for i, frame in enumerate(frames):
|
| 155 |
+
if i in video_segments:
|
| 156 |
+
for out_obj_id, mask in video_segments[i].items():
|
| 157 |
+
frame = apply_color_mask(frame, mask, out_obj_id)
|
| 158 |
+
all_segmented_frames.append(frame.astype(np.uint8))
|
| 159 |
+
else:
|
| 160 |
+
all_segmented_frames.append(frame)
|
| 161 |
+
|
| 162 |
+
# Clean up temporary files
|
| 163 |
+
remove_directory_contents(temp_dir)
|
| 164 |
+
os.rmdir(temp_dir)
|
| 165 |
+
|
| 166 |
+
video.release()
|
| 167 |
+
|
| 168 |
+
if not all_segmented_frames:
|
| 169 |
+
raise ValueError("No frames were processed successfully")
|
| 170 |
+
|
| 171 |
+
# Create video from segmented frames
|
| 172 |
+
output_path = "segmented_video.mp4"
|
| 173 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
|
| 174 |
+
(all_segmented_frames[0].shape[1], all_segmented_frames[0].shape[0]))
|
| 175 |
+
for frame in all_segmented_frames:
|
| 176 |
+
out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
| 177 |
+
out.release()
|
| 178 |
+
|
| 179 |
+
return output_path
|
| 180 |
+
|
| 181 |
+
except Exception as e:
|
| 182 |
+
print(f"Error in process_video: {str(e)}")
|
| 183 |
+
print(traceback.format_exc()) # This will print the full stack trace
|
| 184 |
+
return None
|
| 185 |
+
|
| 186 |
+
def segment_video(video_file, prompt, chunk_size):
|
| 187 |
+
if video_file is None:
|
| 188 |
+
return None
|
| 189 |
+
output_video = process_video(video_file, prompt, int(chunk_size))
|
| 190 |
+
return output_video
|
| 191 |
+
|
| 192 |
+
demo = gr.Interface(
|
| 193 |
+
fn=segment_video,
|
| 194 |
+
inputs=[
|
| 195 |
+
gr.Video(label="Upload Video"),
|
| 196 |
+
gr.Textbox(label="Enter prompt (e.g., 'a gymnast')"),
|
| 197 |
+
gr.Slider(minimum=10, maximum=100, step=10, value=30, label="Chunk Size (frames)")
|
| 198 |
+
],
|
| 199 |
+
outputs=gr.Video(label="Segmented Video"),
|
| 200 |
+
title="Video Object Segmentation with Florence and SAM2",
|
| 201 |
+
description="Upload a video and provide a text prompt to segment a specific object throughout the video."
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
demo.launch()
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
CHANGED
|
@@ -8,4 +8,5 @@ opencv-python
|
|
| 8 |
matplotlib
|
| 9 |
einops
|
| 10 |
timm
|
| 11 |
-
pytest
|
|
|
|
|
|
| 8 |
matplotlib
|
| 9 |
einops
|
| 10 |
timm
|
| 11 |
+
pytest
|
| 12 |
+
ffmpeg-python
|