Spaces:
Sleeping
Sleeping
File size: 32,302 Bytes
24d69a1 72af448 a7c0f75 72af448 a7c0f75 72af448 a7c0f75 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 24d69a1 72af448 bc395b4 72af448 bc395b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 |
# app.py - CodeLab Stage 3: Semantic Analysis - Fixed Version
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModel, T5ForConditionalGeneration
import json
import re
import ast
import time
from typing import Dict, List, Any, Optional
import logging
import traceback
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SemanticAnalyzer:
def __init__(self):
logger.info("🚀 Initializing CodeLab Semantic Analyzer...")
self.models_loaded = False
# Initialize models with error handling
try:
# CodeBERT for semantic understanding
logger.info("📖 Loading CodeBERT...")
self.codebert_tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
self.codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")
# CodeT5 for code analysis and generation
logger.info("🔧 Loading CodeT5...")
self.codet5_tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-base") # ✅
self.codet5_model = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-base")
# Set models to eval mode for inference
self.codebert_model.eval()
self.codet5_model.eval()
self.models_loaded = True
logger.info("✅ All models loaded successfully!")
except Exception as e:
logger.error(f"❌ Error loading models: {str(e)}")
self.models_loaded = False
# Don't raise - allow fallback functionality
def generate_code_embedding(self, code: str) -> List[float]:
"""Generate semantic embedding using CodeBERT"""
if not self.models_loaded:
logger.warning("⚠️ Models not loaded, returning zero embedding")
return [0.0] * 768
try:
# Clean and prepare code
cleaned_code = self._clean_code_for_analysis(code)
# Tokenize code
inputs = self.codebert_tokenizer(
cleaned_code,
return_tensors="pt",
max_length=512,
truncation=True,
padding=True
)
# Generate embedding
with torch.no_grad():
outputs = self.codebert_model(**inputs)
# Use [CLS] token embedding (better for semantic representation)
embedding = outputs.last_hidden_state[:, 0, :].squeeze()
# Normalize embedding
embedding_norm = torch.nn.functional.normalize(embedding, dim=0)
return embedding_norm.tolist()
except Exception as e:
logger.error(f"❌ Error generating embedding: {str(e)}")
return [0.0] * 768 # Return zero vector on error
def analyze_with_codet5(self, code: str, question_text: str) -> Dict[str, Any]:
"""Enhanced code analysis using CodeT5"""
if not self.models_loaded:
return self._fallback_analysis(code)
try:
results = {}
# Task 1: Code summarization with better prompt
summarize_input = f"Summarize the following Python function: {code}"
inputs = self.codet5_tokenizer(
summarize_input,
return_tensors="pt",
max_length=512,
truncation=True
)
with torch.no_grad():
summary_ids = self.codet5_model.generate(
inputs.input_ids,
max_length=100,
num_beams=3, # Increased for better quality
early_stopping=True,
do_sample=False, # Deterministic for consistency
pad_token_id=self.codet5_tokenizer.pad_token_id
)
results['code_summary'] = self.codet5_tokenizer.decode(
summary_ids[0],
skip_special_tokens=True
)
# Task 2: Enhanced pattern extraction
results['logic_patterns'] = self.extract_logic_patterns_enhanced(code)
results['approach_analysis'] = self.analyze_approach_enhanced(code)
results['complexity_analysis'] = self.analyze_complexity_enhanced(code)
results['semantic_quality'] = self.assess_semantic_quality(code)
return results
except Exception as e:
logger.error(f"❌ Error in CodeT5 analysis: {str(e)}")
return self._fallback_analysis(code)
def _fallback_analysis(self, code: str) -> Dict[str, Any]:
"""Fallback analysis when AI models fail"""
lines_count = len(code.split('\n'))
return {
'code_summary': f'Python function with {lines_count} lines',
'logic_patterns': self.extract_logic_patterns_enhanced(code),
'approach_analysis': self.analyze_approach_enhanced(code),
'complexity_analysis': self.analyze_complexity_enhanced(code),
'semantic_quality': self.assess_semantic_quality(code)
}
def extract_logic_patterns_enhanced(self, code: str) -> List[str]:
"""Enhanced logical pattern extraction"""
patterns = []
code_lower = code.lower()
# Basic patterns
if 'max(' in code: patterns.append('builtin_max')
if 'min(' in code: patterns.append('builtin_min')
if 'sum(' in code: patterns.append('builtin_sum')
if 'len(' in code: patterns.append('length_operations')
if 'sorted(' in code: patterns.append('sorting_operations')
# Control flow patterns
if 'for' in code and 'if' in code: patterns.append('iterative_conditional')
if 'while' in code: patterns.append('loop_based')
if 'def' in code: patterns.append('function_definition')
if 'return' in code: patterns.append('return_statement')
# Advanced patterns with regex
if re.search(r'for\s+\w+\s+in\s+range', code): patterns.append('indexed_iteration')
if re.search(r'for\s+\w+\s+in\s+enumerate', code): patterns.append('indexed_enumeration')
if re.search(r'if\s+.*[<>]=?.*:', code): patterns.append('comparison_logic')
if re.search(r'\[.*\]', code): patterns.append('list_operations')
# Error handling patterns
if 'try:' in code or 'except' in code: patterns.append('error_handling')
if 'if not' in code or 'if len(' in code: patterns.append('input_validation')
# Mathematical patterns
if any(op in code for op in ['**', 'pow(', 'sqrt', 'math.']): patterns.append('mathematical_operations')
return list(set(patterns)) # Remove duplicates
def analyze_approach_enhanced(self, code: str) -> str:
"""Enhanced algorithmic approach analysis"""
# Built-in function approaches (optimal)
if 'max(' in code and 'min(' not in code:
return 'builtin_maximum_approach'
elif 'min(' in code and 'max(' not in code:
return 'builtin_minimum_approach'
elif 'max(' in code and 'min(' in code:
return 'dual_builtin_approach'
elif 'sum(' in code:
return 'builtin_aggregation_approach'
elif 'sorted(' in code:
return 'sorting_based_approach'
# Loop-based approaches
elif 'for' in code and 'if' in code and 'range' in code:
return 'indexed_iterative_approach'
elif 'for' in code and 'if' in code:
return 'iterative_comparison_approach'
elif 'while' in code:
return 'loop_based_approach'
# Advanced approaches
elif 'enumerate' in code:
return 'enumerated_iteration_approach'
elif re.search(r'def\s+\w+.*def\s+\w+', code):
return 'nested_function_approach'
else:
return 'custom_logic_approach'
def analyze_complexity_enhanced(self, code: str) -> Dict[str, str]:
"""Enhanced complexity analysis"""
def estimate_time_complexity(code):
nested_loops = len(re.findall(r'for.*for|while.*for|for.*while', code))
single_loops = code.count('for') + code.count('while') - (nested_loops * 2)
if 'max(' in code or 'min(' in code or 'sum(' in code:
return 'O(n)'
elif 'sorted(' in code:
return 'O(n log n)'
elif nested_loops >= 1:
return 'O(n²)' if nested_loops == 1 else 'O(n³)'
elif single_loops >= 1:
return 'O(n)'
else:
return 'O(1)'
def estimate_space_complexity(code):
if 'sorted(' in code or re.search(r'\[.*for.*\]', code):
return 'O(n)'
elif '[' in code and ']' in code:
return 'O(n)'
else:
return 'O(1)'
return {
'time': estimate_time_complexity(code),
'space': estimate_space_complexity(code)
}
def assess_semantic_quality(self, code: str) -> Dict[str, Any]:
"""Assess the semantic quality of code"""
quality_metrics = {
'readability_score': 0,
'logic_clarity': 'unclear',
'efficiency_level': 'low',
'best_practices': []
}
# Readability assessment
lines = code.split('\n')
total_score = 10
# Check for comments or docstrings
if '"""' in code or "'''" in code or '#' in code:
quality_metrics['best_practices'].append('documented_code')
total_score += 1
# Check for meaningful variable names
if re.search(r'\b(max_val|min_val|result|answer|total)\b', code):
quality_metrics['best_practices'].append('meaningful_variables')
total_score += 1
# Check for input validation
if 'if not' in code or 'if len(' in code:
quality_metrics['best_practices'].append('input_validation')
total_score += 1
# Efficiency assessment
if any(builtin in code for builtin in ['max(', 'min(', 'sum(']):
quality_metrics['efficiency_level'] = 'high'
quality_metrics['best_practices'].append('builtin_functions')
elif 'for' in code and 'if' in code:
quality_metrics['efficiency_level'] = 'medium'
# Logic clarity
if len(lines) <= 10 and 'def' in code and 'return' in code:
quality_metrics['logic_clarity'] = 'clear'
elif len(lines) <= 20:
quality_metrics['logic_clarity'] = 'moderate'
quality_metrics['readability_score'] = min(10, max(1, total_score))
return quality_metrics
def generate_optimal_solution(self, question_text: str, question_type: str = "auto_detect") -> Dict[str, Any]:
"""Enhanced optimal solution generation"""
try:
question_lower = question_text.lower()
# Pattern-based solution generation (more reliable than AI generation)
if 'max' in question_lower and 'min' not in question_lower:
return {
'code': 'def find_max(numbers):\n """Find maximum value in a list"""\n if not numbers:\n return None\n return max(numbers)',
'explanation': 'Optimal solution using built-in max() function with input validation',
'approach': 'builtin_optimized',
'complexity': {'time': 'O(n)', 'space': 'O(1)'},
'generated_by': 'pattern_optimized',
'quality_score': 10
}
elif 'min' in question_lower and 'max' not in question_lower:
return {
'code': 'def find_min(numbers):\n """Find minimum value in a list"""\n if not numbers:\n return None\n return min(numbers)',
'explanation': 'Optimal solution using built-in min() function with input validation',
'approach': 'builtin_optimized',
'complexity': {'time': 'O(n)', 'space': 'O(1)'},
'generated_by': 'pattern_optimized',
'quality_score': 10
}
elif 'sum' in question_lower or 'total' in question_lower:
return {
'code': 'def calculate_sum(numbers):\n """Calculate sum of numbers in a list"""\n return sum(numbers)',
'explanation': 'Optimal solution using built-in sum() function',
'approach': 'builtin_optimized',
'complexity': {'time': 'O(n)', 'space': 'O(1)'},
'generated_by': 'pattern_optimized',
'quality_score': 10
}
else:
# Try AI generation as fallback
if self.models_loaded:
return self._ai_generate_solution(question_text)
else:
return self._template_solution(question_text)
except Exception as e:
logger.error(f"❌ Error generating optimal solution: {str(e)}")
return self._template_solution(question_text)
def _ai_generate_solution(self, question_text: str) -> Dict[str, Any]:
"""AI-based solution generation using CodeT5"""
try:
generate_input = f"Generate optimal Python function for: {question_text}"
inputs = self.codet5_tokenizer(
generate_input,
return_tensors="pt",
max_length=256,
truncation=True
)
with torch.no_grad():
generated_ids = self.codet5_model.generate(
inputs.input_ids,
max_length=200,
num_beams=3,
early_stopping=True,
do_sample=False, # Deterministic
pad_token_id=self.codet5_tokenizer.pad_token_id
)
generated_code = self.codet5_tokenizer.decode(
generated_ids[0],
skip_special_tokens=True
)
return {
'code': generated_code,
'explanation': 'AI-generated solution using CodeT5',
'approach': 'ai_generated',
'complexity': 'O(n)',
'generated_by': 'codet5',
'quality_score': 7
}
except Exception as e:
logger.error(f"❌ Error in AI generation: {str(e)}")
return self._template_solution(question_text)
def _template_solution(self, question_text: str) -> Dict[str, Any]:
"""Template-based fallback solution"""
return {
'code': 'def solution(data):\n """Template solution"""\n # Implementation needed\n return data[0] if data else None',
'explanation': 'Template solution - implementation needed based on specific requirements',
'approach': 'template_fallback',
'complexity': 'O(1)',
'generated_by': 'template',
'quality_score': 5
}
def compare_solutions(self, student_code: str, optimal_code: str) -> Dict[str, Any]:
"""Enhanced solution comparison"""
try:
# Generate embeddings for semantic comparison
student_embedding = self.generate_code_embedding(student_code)
optimal_embedding = self.generate_code_embedding(optimal_code)
# Calculate semantic similarity
similarity = self.calculate_cosine_similarity(student_embedding, optimal_embedding)
# Pattern analysis
student_patterns = self.extract_logic_patterns_enhanced(student_code)
optimal_patterns = self.extract_logic_patterns_enhanced(optimal_code)
# Approach comparison
student_approach = self.analyze_approach_enhanced(student_code)
optimal_approach = self.analyze_approach_enhanced(optimal_code)
# Quality comparison
student_quality = self.assess_semantic_quality(student_code)
optimal_quality = self.assess_semantic_quality(optimal_code)
return {
'semantic_similarity': float(similarity),
'student_patterns': student_patterns,
'optimal_patterns': optimal_patterns,
'pattern_overlap': len(set(student_patterns) & set(optimal_patterns)),
'approach_comparison': {
'student': student_approach,
'optimal': optimal_approach,
'matches': student_approach == optimal_approach
},
'quality_comparison': {
'student_readability': student_quality['readability_score'],
'optimal_readability': optimal_quality['readability_score'],
'student_efficiency': student_quality['efficiency_level'],
'optimal_efficiency': optimal_quality['efficiency_level']
},
'complexity_comparison': self.compare_complexity_enhanced(student_code, optimal_code)
}
except Exception as e:
logger.error(f"❌ Error comparing solutions: {str(e)}")
return {
'semantic_similarity': 0.0,
'student_patterns': [],
'optimal_patterns': [],
'pattern_overlap': 0,
'approach_comparison': {'error': str(e)},
'quality_comparison': {'error': str(e)},
'complexity_comparison': 'unable_to_compare'
}
def calculate_cosine_similarity(self, vec1: List[float], vec2: List[float]) -> float:
"""Enhanced cosine similarity calculation"""
try:
if len(vec1) != len(vec2) or not vec1 or not vec2:
return 0.0
# Convert to tensors for more accurate calculation
vec1_tensor = torch.tensor(vec1)
vec2_tensor = torch.tensor(vec2)
# Calculate cosine similarity
similarity = torch.nn.functional.cosine_similarity(
vec1_tensor.unsqueeze(0),
vec2_tensor.unsqueeze(0)
)
return float(similarity.item())
except Exception as e:
logger.error(f"❌ Error calculating similarity: {str(e)}")
return 0.0
def compare_complexity_enhanced(self, code1: str, code2: str) -> Dict[str, Any]:
"""Enhanced complexity comparison"""
complexity1 = self.analyze_complexity_enhanced(code1)
complexity2 = self.analyze_complexity_enhanced(code2)
# Complexity ranking for comparison
complexity_rank = {
'O(1)': 1, 'O(log n)': 2, 'O(n)': 3,
'O(n log n)': 4, 'O(n²)': 5, 'O(n³)': 6
}
rank1 = complexity_rank.get(complexity1['time'], 999)
rank2 = complexity_rank.get(complexity2['time'], 999)
return {
'student_complexity': complexity1,
'optimal_complexity': complexity2,
'efficiency_comparison': 'better' if rank1 < rank2 else 'worse' if rank1 > rank2 else 'same',
'recommendation': self._get_complexity_recommendation(complexity1, complexity2)
}
def _get_complexity_recommendation(self, student_comp: Dict, optimal_comp: Dict) -> str:
"""Generate complexity-based recommendations"""
if student_comp['time'] == optimal_comp['time']:
return "Excellent! Your solution has optimal time complexity"
elif student_comp['time'] in ['O(n²)', 'O(n³)'] and optimal_comp['time'] == 'O(n)':
return "Consider using built-in functions to improve from quadratic to linear complexity"
elif student_comp['time'] == 'O(n)' and optimal_comp['time'] == 'O(1)':
return "Good approach, but there might be a constant-time solution"
else:
return "Your complexity is acceptable, but optimization is possible"
def _clean_code_for_analysis(self, code: str) -> str:
"""Clean code for better analysis"""
# Remove excessive whitespace
lines = [line.strip() for line in code.split('\n') if line.strip()]
return '\n'.join(lines)
# Initialize the analyzer (with lazy loading)
analyzer = None
def get_analyzer():
"""Get analyzer instance with lazy initialization"""
global analyzer
if analyzer is None:
analyzer = SemanticAnalyzer()
return analyzer
def process_semantic_analysis(
student_code: str,
question_text: str,
question_id: str = "default",
need_optimal_solution: bool = True
) -> str:
"""Enhanced main function for semantic analysis"""
start_time = time.time()
try:
logger.info(f"🧠 Starting enhanced semantic analysis for question: {question_id}")
# Get analyzer instance
semantic_analyzer = get_analyzer()
# Input validation
if not student_code or not student_code.strip():
return json.dumps({
'success': False,
'error': 'Empty code provided',
'processing_time_ms': int((time.time() - start_time) * 1000)
})
# Step 1: Generate code embedding
logger.info("📊 Generating code embedding...")
code_embedding = semantic_analyzer.generate_code_embedding(student_code)
# Step 2: Enhanced analysis with CodeT5
logger.info("🔍 Performing enhanced analysis...")
codet5_analysis = semantic_analyzer.analyze_with_codet5(student_code, question_text)
# Step 3: Generate optimal solution if needed
optimal_solution = None
if need_optimal_solution:
logger.info("💡 Generating optimal solution...")
optimal_solution = semantic_analyzer.generate_optimal_solution(question_text)
# Step 4: Enhanced solution comparison
comparison = None
if optimal_solution:
logger.info("⚖️ Performing enhanced comparison...")
comparison = semantic_analyzer.compare_solutions(student_code, optimal_solution['code'])
# Step 5: Generate comprehensive insights
insights = generate_comprehensive_insights(
student_code,
codet5_analysis,
comparison,
optimal_solution
)
processing_time = time.time() - start_time
# Prepare enhanced results
results = {
'success': True,
'processing_time_ms': int(processing_time * 1000),
'semantic_analysis': {
'code_embedding': code_embedding[:100], # More dimensions for better representation
'embedding_size': len(code_embedding),
'logic_patterns': codet5_analysis['logic_patterns'],
'approach_analysis': codet5_analysis['approach_analysis'],
'complexity_analysis': codet5_analysis['complexity_analysis'],
'semantic_quality': codet5_analysis['semantic_quality'],
'code_summary': codet5_analysis['code_summary']
},
'optimal_solution': optimal_solution,
'solution_comparison': comparison,
'semantic_insights': insights,
'recommendations': generate_recommendations(codet5_analysis, comparison),
'metadata': {
'question_id': question_id,
'analysis_version': '3.1-enhanced-ai',
'models_used': ['CodeBERT', 'CodeT5'] if semantic_analyzer.models_loaded else ['Fallback'],
'models_status': 'loaded' if semantic_analyzer.models_loaded else 'fallback',
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S'),
'processing_stage': 'semantic_analysis'
}
}
logger.info(f"✅ Enhanced semantic analysis completed in {processing_time:.2f}s")
return json.dumps(results, indent=2)
except Exception as e:
logger.error(f"❌ Error in semantic analysis: {str(e)}")
logger.error(traceback.format_exc())
return json.dumps({
'success': False,
'error': str(e),
'processing_time_ms': int((time.time() - start_time) * 1000),
'fallback_analysis': 'Enhanced analysis unavailable due to error',
'metadata': {
'analysis_version': '3.1-enhanced-ai',
'error_occurred': True,
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
}
})
def generate_comprehensive_insights(
student_code: str,
codet5_analysis: Dict,
comparison: Optional[Dict] = None,
optimal_solution: Optional[Dict] = None
) -> List[str]:
"""Generate comprehensive insights about the student's code"""
insights = []
# Logic understanding insights
patterns = codet5_analysis['logic_patterns']
if 'builtin_max' in patterns or 'builtin_min' in patterns or 'builtin_sum' in patterns:
insights.append("Excellent! Student demonstrates advanced understanding by using Python built-in functions")
elif 'iterative_conditional' in patterns:
insights.append("Good logical thinking demonstrated with iterative comparison approach")
elif 'function_definition' in patterns and 'return_statement' in patterns:
insights.append("Proper function structure with clear return logic")
# Approach analysis insights
approach = codet5_analysis['approach_analysis']
if 'builtin' in approach:
insights.append("Optimal algorithmic approach chosen - highly efficient solution")
elif 'iterative' in approach:
insights.append("Solid iterative approach, shows good programming fundamentals")
elif 'custom' in approach:
insights.append("Creative custom approach, demonstrates independent problem-solving")
# Complexity insights
complexity = codet5_analysis['complexity_analysis']
if complexity['time'] == 'O(n)' and complexity['space'] == 'O(1)':
insights.append("Excellent time and space complexity - very efficient solution")
elif complexity['time'] in ['O(n²)', 'O(n³)']:
insights.append("Solution works correctly but could benefit from complexity optimization")
# Quality insights
quality = codet5_analysis['semantic_quality']
if quality['readability_score'] >= 8:
insights.append("Code is highly readable with good programming practices")
elif quality['efficiency_level'] == 'high':
insights.append("Solution demonstrates awareness of efficient programming techniques")
# Comparison insights
if comparison:
similarity = comparison['semantic_similarity']
if similarity > 0.8:
insights.append("Student's solution is semantically very similar to the optimal approach")
elif similarity > 0.6:
insights.append("Good understanding shown, with opportunities for further optimization")
elif similarity > 0.4:
insights.append("Correct approach with different implementation style")
# Pattern overlap insights
overlap = comparison['pattern_overlap']
total_patterns = len(comparison['optimal_patterns'])
if total_patterns > 0 and overlap / total_patterns > 0.7:
insights.append("Strong pattern recognition - matches most optimal solution patterns")
# Default insight if none found
if not insights:
insights.append("Student shows basic understanding of the problem and provides a working solution")
return insights
def generate_recommendations(codet5_analysis: Dict, comparison: Optional[Dict] = None) -> List[str]:
"""Generate actionable recommendations for improvement"""
recommendations = []
# Efficiency recommendations
patterns = codet5_analysis['logic_patterns']
if 'iterative_conditional' in patterns and 'builtin_max' not in patterns:
recommendations.append("Consider using built-in max() or min() functions for better efficiency")
# Complexity recommendations
complexity = codet5_analysis['complexity_analysis']
if complexity['time'] in ['O(n²)', 'O(n³)']:
recommendations.append("Try to reduce algorithmic complexity using more efficient approaches")
# Quality recommendations
quality = codet5_analysis['semantic_quality']
if quality['readability_score'] < 7:
recommendations.append("Add comments or use more descriptive variable names for better readability")
if 'input_validation' not in quality['best_practices']:
recommendations.append("Consider adding input validation for more robust code")
# Comparison-based recommendations
if comparison and comparison['semantic_similarity'] < 0.6:
recommendations.append("Review the optimal solution to learn alternative approaches")
return recommendations
# Enhanced Gradio Interface
def gradio_interface(student_code, question_text, need_optimal):
"""Enhanced Gradio interface wrapper"""
if not student_code.strip():
return json.dumps({
'error': 'Please provide student code for analysis',
'success': False
}, indent=2)
return process_semantic_analysis(
student_code=student_code,
question_text=question_text,
question_id="gradio_test",
need_optimal_solution=need_optimal
)
# Create enhanced Gradio interface
demo = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(
label="Student Code",
placeholder="Enter Python code here...",
lines=12,
value="def find_max(numbers):\n max_val = numbers[0]\n for num in numbers:\n if num > max_val:\n max_val = num\n return max_val"
),
gr.Textbox(
label="Question Text",
placeholder="Enter the question...",
lines=2,
value="Find the maximum number in a list"
),
gr.Checkbox(
label="Generate Optimal Solution",
value=True
)
],
outputs=gr.Textbox(
label="Semantic Analysis Results (JSON)",
lines=25,
show_copy_button=True
),
title="🧠 CodeLab Semantic Analysis - Stage 3 (Fixed)",
description="""
Advanced semantic analysis using CodeBERT and CodeT5 models for educational code evaluation.
This system analyzes code semantics, generates optimal solutions, and provides educational insights.
""",
examples=[
[
"def find_max(numbers):\n return max(numbers)",
"Find the maximum number in a list",
True
],
[
"def find_min(arr):\n minimum = arr[0]\n for i in range(1, len(arr)):\n if arr[i] < minimum:\n minimum = arr[i]\n return minimum",
"Find the minimum number in an array",
True
],
[
"def calculate_sum(nums):\n total = 0\n for num in nums:\n total += num\n return total",
"Calculate the sum of all numbers in a list",
True
]
],
theme=gr.themes.Soft(),
analytics_enabled=False
)
# Launch the interface
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860
)
|