File size: 32,302 Bytes
24d69a1
72af448
 
a7c0f75
72af448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7c0f75
72af448
 
a7c0f75
72af448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d69a1
 
 
 
 
 
 
 
 
72af448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d69a1
 
 
 
72af448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d69a1
72af448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d69a1
72af448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d69a1
72af448
 
 
 
 
 
 
 
24d69a1
72af448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d69a1
72af448
 
 
 
 
 
 
 
24d69a1
72af448
 
 
 
 
 
 
 
24d69a1
72af448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d69a1
72af448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d69a1
 
72af448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d69a1
72af448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d69a1
72af448
 
 
 
 
 
24d69a1
72af448
 
 
 
24d69a1
72af448
 
 
 
24d69a1
72af448
 
 
 
 
 
 
 
 
 
 
 
bc395b4
72af448
bc395b4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
# app.py - CodeLab Stage 3: Semantic Analysis - Fixed Version
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModel, T5ForConditionalGeneration
import json
import re
import ast
import time
from typing import Dict, List, Any, Optional
import logging
import traceback

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class SemanticAnalyzer:
    def __init__(self):
        logger.info("🚀 Initializing CodeLab Semantic Analyzer...")
        self.models_loaded = False
        
        # Initialize models with error handling
        try:
            # CodeBERT for semantic understanding
            logger.info("📖 Loading CodeBERT...")
            self.codebert_tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
            self.codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")

            # CodeT5 for code analysis and generation
            logger.info("🔧 Loading CodeT5...")
            self.codet5_tokenizer = AutoTokenizer.from_pretrained("Salesforce/codet5-base")  # ✅
            self.codet5_model = T5ForConditionalGeneration.from_pretrained("Salesforce/codet5-base")
            
            # Set models to eval mode for inference
            self.codebert_model.eval()
            self.codet5_model.eval()
            
            self.models_loaded = True
            logger.info("✅ All models loaded successfully!")
            
        except Exception as e:
            logger.error(f"❌ Error loading models: {str(e)}")
            self.models_loaded = False
            # Don't raise - allow fallback functionality
    
    def generate_code_embedding(self, code: str) -> List[float]:
        """Generate semantic embedding using CodeBERT"""
        if not self.models_loaded:
            logger.warning("⚠️ Models not loaded, returning zero embedding")
            return [0.0] * 768
            
        try:
            # Clean and prepare code
            cleaned_code = self._clean_code_for_analysis(code)
            
            # Tokenize code
            inputs = self.codebert_tokenizer(
                cleaned_code, 
                return_tensors="pt", 
                max_length=512, 
                truncation=True, 
                padding=True
            )
            
            # Generate embedding
            with torch.no_grad():
                outputs = self.codebert_model(**inputs)
                # Use [CLS] token embedding (better for semantic representation)
                embedding = outputs.last_hidden_state[:, 0, :].squeeze()
                
                # Normalize embedding
                embedding_norm = torch.nn.functional.normalize(embedding, dim=0)
                
            return embedding_norm.tolist()
            
        except Exception as e:
            logger.error(f"❌ Error generating embedding: {str(e)}")
            return [0.0] * 768  # Return zero vector on error
    
    def analyze_with_codet5(self, code: str, question_text: str) -> Dict[str, Any]:
        """Enhanced code analysis using CodeT5"""
        if not self.models_loaded:
            return self._fallback_analysis(code)
            
        try:
            results = {}
            
            # Task 1: Code summarization with better prompt
            summarize_input = f"Summarize the following Python function: {code}"
            inputs = self.codet5_tokenizer(
                summarize_input, 
                return_tensors="pt", 
                max_length=512, 
                truncation=True
            )
            
            with torch.no_grad():
                summary_ids = self.codet5_model.generate(
                    inputs.input_ids,
                    max_length=100,
                    num_beams=3,  # Increased for better quality
                    early_stopping=True,
                    do_sample=False,  # Deterministic for consistency
                    pad_token_id=self.codet5_tokenizer.pad_token_id
                )
                
            results['code_summary'] = self.codet5_tokenizer.decode(
                summary_ids[0], 
                skip_special_tokens=True
            )
            
            # Task 2: Enhanced pattern extraction
            results['logic_patterns'] = self.extract_logic_patterns_enhanced(code)
            results['approach_analysis'] = self.analyze_approach_enhanced(code)
            results['complexity_analysis'] = self.analyze_complexity_enhanced(code)
            results['semantic_quality'] = self.assess_semantic_quality(code)
            
            return results
            
        except Exception as e:
            logger.error(f"❌ Error in CodeT5 analysis: {str(e)}")
            return self._fallback_analysis(code)
    
    def _fallback_analysis(self, code: str) -> Dict[str, Any]:
        """Fallback analysis when AI models fail"""
        lines_count = len(code.split('\n'))
        return {
            'code_summary': f'Python function with {lines_count} lines',
            'logic_patterns': self.extract_logic_patterns_enhanced(code),
            'approach_analysis': self.analyze_approach_enhanced(code),
            'complexity_analysis': self.analyze_complexity_enhanced(code),
            'semantic_quality': self.assess_semantic_quality(code)
        }
    
    def extract_logic_patterns_enhanced(self, code: str) -> List[str]:
        """Enhanced logical pattern extraction"""
        patterns = []
        code_lower = code.lower()
        
        # Basic patterns
        if 'max(' in code: patterns.append('builtin_max')
        if 'min(' in code: patterns.append('builtin_min')
        if 'sum(' in code: patterns.append('builtin_sum')
        if 'len(' in code: patterns.append('length_operations')
        if 'sorted(' in code: patterns.append('sorting_operations')
        
        # Control flow patterns
        if 'for' in code and 'if' in code: patterns.append('iterative_conditional')
        if 'while' in code: patterns.append('loop_based')
        if 'def' in code: patterns.append('function_definition')
        if 'return' in code: patterns.append('return_statement')
        
        # Advanced patterns with regex
        if re.search(r'for\s+\w+\s+in\s+range', code): patterns.append('indexed_iteration')
        if re.search(r'for\s+\w+\s+in\s+enumerate', code): patterns.append('indexed_enumeration')
        if re.search(r'if\s+.*[<>]=?.*:', code): patterns.append('comparison_logic')
        if re.search(r'\[.*\]', code): patterns.append('list_operations')
        
        # Error handling patterns
        if 'try:' in code or 'except' in code: patterns.append('error_handling')
        if 'if not' in code or 'if len(' in code: patterns.append('input_validation')
        
        # Mathematical patterns
        if any(op in code for op in ['**', 'pow(', 'sqrt', 'math.']): patterns.append('mathematical_operations')
        
        return list(set(patterns))  # Remove duplicates
    
    def analyze_approach_enhanced(self, code: str) -> str:
        """Enhanced algorithmic approach analysis"""
        # Built-in function approaches (optimal)
        if 'max(' in code and 'min(' not in code:
            return 'builtin_maximum_approach'
        elif 'min(' in code and 'max(' not in code:
            return 'builtin_minimum_approach'
        elif 'max(' in code and 'min(' in code:
            return 'dual_builtin_approach'
        elif 'sum(' in code:
            return 'builtin_aggregation_approach'
        elif 'sorted(' in code:
            return 'sorting_based_approach'
        
        # Loop-based approaches
        elif 'for' in code and 'if' in code and 'range' in code:
            return 'indexed_iterative_approach'
        elif 'for' in code and 'if' in code:
            return 'iterative_comparison_approach'
        elif 'while' in code:
            return 'loop_based_approach'
        
        # Advanced approaches
        elif 'enumerate' in code:
            return 'enumerated_iteration_approach'
        elif re.search(r'def\s+\w+.*def\s+\w+', code):
            return 'nested_function_approach'
        else:
            return 'custom_logic_approach'
    
    def analyze_complexity_enhanced(self, code: str) -> Dict[str, str]:
        """Enhanced complexity analysis"""
        def estimate_time_complexity(code):
            nested_loops = len(re.findall(r'for.*for|while.*for|for.*while', code))
            single_loops = code.count('for') + code.count('while') - (nested_loops * 2)
            
            if 'max(' in code or 'min(' in code or 'sum(' in code:
                return 'O(n)'
            elif 'sorted(' in code:
                return 'O(n log n)'
            elif nested_loops >= 1:
                return 'O(n²)' if nested_loops == 1 else 'O(n³)'
            elif single_loops >= 1:
                return 'O(n)'
            else:
                return 'O(1)'
        
        def estimate_space_complexity(code):
            if 'sorted(' in code or re.search(r'\[.*for.*\]', code):
                return 'O(n)'
            elif '[' in code and ']' in code:
                return 'O(n)'
            else:
                return 'O(1)'
        
        return {
            'time': estimate_time_complexity(code),
            'space': estimate_space_complexity(code)
        }
    
    def assess_semantic_quality(self, code: str) -> Dict[str, Any]:
        """Assess the semantic quality of code"""
        quality_metrics = {
            'readability_score': 0,
            'logic_clarity': 'unclear',
            'efficiency_level': 'low',
            'best_practices': []
        }
        
        # Readability assessment
        lines = code.split('\n')
        total_score = 10
        
        # Check for comments or docstrings
        if '"""' in code or "'''" in code or '#' in code:
            quality_metrics['best_practices'].append('documented_code')
            total_score += 1
        
        # Check for meaningful variable names
        if re.search(r'\b(max_val|min_val|result|answer|total)\b', code):
            quality_metrics['best_practices'].append('meaningful_variables')
            total_score += 1
        
        # Check for input validation
        if 'if not' in code or 'if len(' in code:
            quality_metrics['best_practices'].append('input_validation')
            total_score += 1
        
        # Efficiency assessment
        if any(builtin in code for builtin in ['max(', 'min(', 'sum(']):
            quality_metrics['efficiency_level'] = 'high'
            quality_metrics['best_practices'].append('builtin_functions')
        elif 'for' in code and 'if' in code:
            quality_metrics['efficiency_level'] = 'medium'
        
        # Logic clarity
        if len(lines) <= 10 and 'def' in code and 'return' in code:
            quality_metrics['logic_clarity'] = 'clear'
        elif len(lines) <= 20:
            quality_metrics['logic_clarity'] = 'moderate'
        
        quality_metrics['readability_score'] = min(10, max(1, total_score))
        
        return quality_metrics
    
    def generate_optimal_solution(self, question_text: str, question_type: str = "auto_detect") -> Dict[str, Any]:
        """Enhanced optimal solution generation"""
        try:
            question_lower = question_text.lower()
            
            # Pattern-based solution generation (more reliable than AI generation)
            if 'max' in question_lower and 'min' not in question_lower:
                return {
                    'code': 'def find_max(numbers):\n    """Find maximum value in a list"""\n    if not numbers:\n        return None\n    return max(numbers)',
                    'explanation': 'Optimal solution using built-in max() function with input validation',
                    'approach': 'builtin_optimized',
                    'complexity': {'time': 'O(n)', 'space': 'O(1)'},
                    'generated_by': 'pattern_optimized',
                    'quality_score': 10
                }
            elif 'min' in question_lower and 'max' not in question_lower:
                return {
                    'code': 'def find_min(numbers):\n    """Find minimum value in a list"""\n    if not numbers:\n        return None\n    return min(numbers)',
                    'explanation': 'Optimal solution using built-in min() function with input validation',
                    'approach': 'builtin_optimized',
                    'complexity': {'time': 'O(n)', 'space': 'O(1)'},
                    'generated_by': 'pattern_optimized',
                    'quality_score': 10
                }
            elif 'sum' in question_lower or 'total' in question_lower:
                return {
                    'code': 'def calculate_sum(numbers):\n    """Calculate sum of numbers in a list"""\n    return sum(numbers)',
                    'explanation': 'Optimal solution using built-in sum() function',
                    'approach': 'builtin_optimized',
                    'complexity': {'time': 'O(n)', 'space': 'O(1)'},
                    'generated_by': 'pattern_optimized',
                    'quality_score': 10
                }
            else:
                # Try AI generation as fallback
                if self.models_loaded:
                    return self._ai_generate_solution(question_text)
                else:
                    return self._template_solution(question_text)
            
        except Exception as e:
            logger.error(f"❌ Error generating optimal solution: {str(e)}")
            return self._template_solution(question_text)
    
    def _ai_generate_solution(self, question_text: str) -> Dict[str, Any]:
        """AI-based solution generation using CodeT5"""
        try:
            generate_input = f"Generate optimal Python function for: {question_text}"
            inputs = self.codet5_tokenizer(
                generate_input,
                return_tensors="pt",
                max_length=256,
                truncation=True
            )
            
            with torch.no_grad():
                generated_ids = self.codet5_model.generate(
                    inputs.input_ids,
                    max_length=200,
                    num_beams=3,
                    early_stopping=True,
                    do_sample=False,  # Deterministic
                    pad_token_id=self.codet5_tokenizer.pad_token_id
                )
            
            generated_code = self.codet5_tokenizer.decode(
                generated_ids[0],
                skip_special_tokens=True
            )
            
            return {
                'code': generated_code,
                'explanation': 'AI-generated solution using CodeT5',
                'approach': 'ai_generated',
                'complexity': 'O(n)',
                'generated_by': 'codet5',
                'quality_score': 7
            }
            
        except Exception as e:
            logger.error(f"❌ Error in AI generation: {str(e)}")
            return self._template_solution(question_text)
    
    def _template_solution(self, question_text: str) -> Dict[str, Any]:
        """Template-based fallback solution"""
        return {
            'code': 'def solution(data):\n    """Template solution"""\n    # Implementation needed\n    return data[0] if data else None',
            'explanation': 'Template solution - implementation needed based on specific requirements',
            'approach': 'template_fallback',
            'complexity': 'O(1)',
            'generated_by': 'template',
            'quality_score': 5
        }
    
    def compare_solutions(self, student_code: str, optimal_code: str) -> Dict[str, Any]:
        """Enhanced solution comparison"""
        try:
            # Generate embeddings for semantic comparison
            student_embedding = self.generate_code_embedding(student_code)
            optimal_embedding = self.generate_code_embedding(optimal_code)
            
            # Calculate semantic similarity
            similarity = self.calculate_cosine_similarity(student_embedding, optimal_embedding)
            
            # Pattern analysis
            student_patterns = self.extract_logic_patterns_enhanced(student_code)
            optimal_patterns = self.extract_logic_patterns_enhanced(optimal_code)
            
            # Approach comparison
            student_approach = self.analyze_approach_enhanced(student_code)
            optimal_approach = self.analyze_approach_enhanced(optimal_code)
            
            # Quality comparison
            student_quality = self.assess_semantic_quality(student_code)
            optimal_quality = self.assess_semantic_quality(optimal_code)
            
            return {
                'semantic_similarity': float(similarity),
                'student_patterns': student_patterns,
                'optimal_patterns': optimal_patterns,
                'pattern_overlap': len(set(student_patterns) & set(optimal_patterns)),
                'approach_comparison': {
                    'student': student_approach,
                    'optimal': optimal_approach,
                    'matches': student_approach == optimal_approach
                },
                'quality_comparison': {
                    'student_readability': student_quality['readability_score'],
                    'optimal_readability': optimal_quality['readability_score'],
                    'student_efficiency': student_quality['efficiency_level'],
                    'optimal_efficiency': optimal_quality['efficiency_level']
                },
                'complexity_comparison': self.compare_complexity_enhanced(student_code, optimal_code)
            }
            
        except Exception as e:
            logger.error(f"❌ Error comparing solutions: {str(e)}")
            return {
                'semantic_similarity': 0.0,
                'student_patterns': [],
                'optimal_patterns': [],
                'pattern_overlap': 0,
                'approach_comparison': {'error': str(e)},
                'quality_comparison': {'error': str(e)},
                'complexity_comparison': 'unable_to_compare'
            }
    
    def calculate_cosine_similarity(self, vec1: List[float], vec2: List[float]) -> float:
        """Enhanced cosine similarity calculation"""
        try:
            if len(vec1) != len(vec2) or not vec1 or not vec2:
                return 0.0
            
            # Convert to tensors for more accurate calculation
            vec1_tensor = torch.tensor(vec1)
            vec2_tensor = torch.tensor(vec2)
            
            # Calculate cosine similarity
            similarity = torch.nn.functional.cosine_similarity(
                vec1_tensor.unsqueeze(0), 
                vec2_tensor.unsqueeze(0)
            )
            
            return float(similarity.item())
            
        except Exception as e:
            logger.error(f"❌ Error calculating similarity: {str(e)}")
            return 0.0
    
    def compare_complexity_enhanced(self, code1: str, code2: str) -> Dict[str, Any]:
        """Enhanced complexity comparison"""
        complexity1 = self.analyze_complexity_enhanced(code1)
        complexity2 = self.analyze_complexity_enhanced(code2)
        
        # Complexity ranking for comparison
        complexity_rank = {
            'O(1)': 1, 'O(log n)': 2, 'O(n)': 3, 
            'O(n log n)': 4, 'O(n²)': 5, 'O(n³)': 6
        }
        
        rank1 = complexity_rank.get(complexity1['time'], 999)
        rank2 = complexity_rank.get(complexity2['time'], 999)
        
        return {
            'student_complexity': complexity1,
            'optimal_complexity': complexity2,
            'efficiency_comparison': 'better' if rank1 < rank2 else 'worse' if rank1 > rank2 else 'same',
            'recommendation': self._get_complexity_recommendation(complexity1, complexity2)
        }
    
    def _get_complexity_recommendation(self, student_comp: Dict, optimal_comp: Dict) -> str:
        """Generate complexity-based recommendations"""
        if student_comp['time'] == optimal_comp['time']:
            return "Excellent! Your solution has optimal time complexity"
        elif student_comp['time'] in ['O(n²)', 'O(n³)'] and optimal_comp['time'] == 'O(n)':
            return "Consider using built-in functions to improve from quadratic to linear complexity"
        elif student_comp['time'] == 'O(n)' and optimal_comp['time'] == 'O(1)':
            return "Good approach, but there might be a constant-time solution"
        else:
            return "Your complexity is acceptable, but optimization is possible"
    
    def _clean_code_for_analysis(self, code: str) -> str:
        """Clean code for better analysis"""
        # Remove excessive whitespace
        lines = [line.strip() for line in code.split('\n') if line.strip()]
        return '\n'.join(lines)

# Initialize the analyzer (with lazy loading)
analyzer = None

def get_analyzer():
    """Get analyzer instance with lazy initialization"""
    global analyzer
    if analyzer is None:
        analyzer = SemanticAnalyzer()
    return analyzer

def process_semantic_analysis(
    student_code: str,
    question_text: str,
    question_id: str = "default",
    need_optimal_solution: bool = True
) -> str:
    """Enhanced main function for semantic analysis"""
    start_time = time.time()
    
    try:
        logger.info(f"🧠 Starting enhanced semantic analysis for question: {question_id}")
        
        # Get analyzer instance
        semantic_analyzer = get_analyzer()
        
        # Input validation
        if not student_code or not student_code.strip():
            return json.dumps({
                'success': False,
                'error': 'Empty code provided',
                'processing_time_ms': int((time.time() - start_time) * 1000)
            })
        
        # Step 1: Generate code embedding
        logger.info("📊 Generating code embedding...")
        code_embedding = semantic_analyzer.generate_code_embedding(student_code)
        
        # Step 2: Enhanced analysis with CodeT5
        logger.info("🔍 Performing enhanced analysis...")
        codet5_analysis = semantic_analyzer.analyze_with_codet5(student_code, question_text)
        
        # Step 3: Generate optimal solution if needed
        optimal_solution = None
        if need_optimal_solution:
            logger.info("💡 Generating optimal solution...")
            optimal_solution = semantic_analyzer.generate_optimal_solution(question_text)
        
        # Step 4: Enhanced solution comparison
        comparison = None
        if optimal_solution:
            logger.info("⚖️ Performing enhanced comparison...")
            comparison = semantic_analyzer.compare_solutions(student_code, optimal_solution['code'])
        
        # Step 5: Generate comprehensive insights
        insights = generate_comprehensive_insights(
            student_code, 
            codet5_analysis, 
            comparison, 
            optimal_solution
        )
        
        processing_time = time.time() - start_time
        
        # Prepare enhanced results
        results = {
            'success': True,
            'processing_time_ms': int(processing_time * 1000),
            'semantic_analysis': {
                'code_embedding': code_embedding[:100],  # More dimensions for better representation
                'embedding_size': len(code_embedding),
                'logic_patterns': codet5_analysis['logic_patterns'],
                'approach_analysis': codet5_analysis['approach_analysis'],
                'complexity_analysis': codet5_analysis['complexity_analysis'],
                'semantic_quality': codet5_analysis['semantic_quality'],
                'code_summary': codet5_analysis['code_summary']
            },
            'optimal_solution': optimal_solution,
            'solution_comparison': comparison,
            'semantic_insights': insights,
            'recommendations': generate_recommendations(codet5_analysis, comparison),
            'metadata': {
                'question_id': question_id,
                'analysis_version': '3.1-enhanced-ai',
                'models_used': ['CodeBERT', 'CodeT5'] if semantic_analyzer.models_loaded else ['Fallback'],
                'models_status': 'loaded' if semantic_analyzer.models_loaded else 'fallback',
                'timestamp': time.strftime('%Y-%m-%d %H:%M:%S'),
                'processing_stage': 'semantic_analysis'
            }
        }
        
        logger.info(f"✅ Enhanced semantic analysis completed in {processing_time:.2f}s")
        return json.dumps(results, indent=2)
        
    except Exception as e:
        logger.error(f"❌ Error in semantic analysis: {str(e)}")
        logger.error(traceback.format_exc())
        return json.dumps({
            'success': False,
            'error': str(e),
            'processing_time_ms': int((time.time() - start_time) * 1000),
            'fallback_analysis': 'Enhanced analysis unavailable due to error',
            'metadata': {
                'analysis_version': '3.1-enhanced-ai',
                'error_occurred': True,
                'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
            }
        })

def generate_comprehensive_insights(
    student_code: str, 
    codet5_analysis: Dict, 
    comparison: Optional[Dict] = None, 
    optimal_solution: Optional[Dict] = None
) -> List[str]:
    """Generate comprehensive insights about the student's code"""
    insights = []
    
    # Logic understanding insights
    patterns = codet5_analysis['logic_patterns']
    if 'builtin_max' in patterns or 'builtin_min' in patterns or 'builtin_sum' in patterns:
        insights.append("Excellent! Student demonstrates advanced understanding by using Python built-in functions")
    elif 'iterative_conditional' in patterns:
        insights.append("Good logical thinking demonstrated with iterative comparison approach")
    elif 'function_definition' in patterns and 'return_statement' in patterns:
        insights.append("Proper function structure with clear return logic")
    
    # Approach analysis insights
    approach = codet5_analysis['approach_analysis']
    if 'builtin' in approach:
        insights.append("Optimal algorithmic approach chosen - highly efficient solution")
    elif 'iterative' in approach:
        insights.append("Solid iterative approach, shows good programming fundamentals")
    elif 'custom' in approach:
        insights.append("Creative custom approach, demonstrates independent problem-solving")
    
    # Complexity insights
    complexity = codet5_analysis['complexity_analysis']
    if complexity['time'] == 'O(n)' and complexity['space'] == 'O(1)':
        insights.append("Excellent time and space complexity - very efficient solution")
    elif complexity['time'] in ['O(n²)', 'O(n³)']:
        insights.append("Solution works correctly but could benefit from complexity optimization")
    
    # Quality insights
    quality = codet5_analysis['semantic_quality']
    if quality['readability_score'] >= 8:
        insights.append("Code is highly readable with good programming practices")
    elif quality['efficiency_level'] == 'high':
        insights.append("Solution demonstrates awareness of efficient programming techniques")
    
    # Comparison insights
    if comparison:
        similarity = comparison['semantic_similarity']
        if similarity > 0.8:
            insights.append("Student's solution is semantically very similar to the optimal approach")
        elif similarity > 0.6:
            insights.append("Good understanding shown, with opportunities for further optimization")
        elif similarity > 0.4:
            insights.append("Correct approach with different implementation style")
        
        # Pattern overlap insights
        overlap = comparison['pattern_overlap']
        total_patterns = len(comparison['optimal_patterns'])
        if total_patterns > 0 and overlap / total_patterns > 0.7:
            insights.append("Strong pattern recognition - matches most optimal solution patterns")
    
    # Default insight if none found
    if not insights:
        insights.append("Student shows basic understanding of the problem and provides a working solution")
    
    return insights

def generate_recommendations(codet5_analysis: Dict, comparison: Optional[Dict] = None) -> List[str]:
    """Generate actionable recommendations for improvement"""
    recommendations = []
    
    # Efficiency recommendations
    patterns = codet5_analysis['logic_patterns']
    if 'iterative_conditional' in patterns and 'builtin_max' not in patterns:
        recommendations.append("Consider using built-in max() or min() functions for better efficiency")
    
    # Complexity recommendations  
    complexity = codet5_analysis['complexity_analysis']
    if complexity['time'] in ['O(n²)', 'O(n³)']:
        recommendations.append("Try to reduce algorithmic complexity using more efficient approaches")
    
    # Quality recommendations
    quality = codet5_analysis['semantic_quality']
    if quality['readability_score'] < 7:
        recommendations.append("Add comments or use more descriptive variable names for better readability")
    
    if 'input_validation' not in quality['best_practices']:
        recommendations.append("Consider adding input validation for more robust code")
    
    # Comparison-based recommendations
    if comparison and comparison['semantic_similarity'] < 0.6:
        recommendations.append("Review the optimal solution to learn alternative approaches")
    
    return recommendations

# Enhanced Gradio Interface
def gradio_interface(student_code, question_text, need_optimal):
    """Enhanced Gradio interface wrapper"""
    if not student_code.strip():
        return json.dumps({
            'error': 'Please provide student code for analysis',
            'success': False
        }, indent=2)
    
    return process_semantic_analysis(
        student_code=student_code,
        question_text=question_text,
        question_id="gradio_test",
        need_optimal_solution=need_optimal
    )

# Create enhanced Gradio interface
demo = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(
            label="Student Code",
            placeholder="Enter Python code here...",
            lines=12,
            value="def find_max(numbers):\n    max_val = numbers[0]\n    for num in numbers:\n        if num > max_val:\n            max_val = num\n    return max_val"
        ),
        gr.Textbox(
            label="Question Text",
            placeholder="Enter the question...",
            lines=2,
            value="Find the maximum number in a list"
        ),
        gr.Checkbox(
            label="Generate Optimal Solution",
            value=True
        )
    ],
    outputs=gr.Textbox(
        label="Semantic Analysis Results (JSON)",
        lines=25,
        show_copy_button=True
    ),
    title="🧠 CodeLab Semantic Analysis - Stage 3 (Fixed)",
    description="""
    Advanced semantic analysis using CodeBERT and CodeT5 models for educational code evaluation.
    This system analyzes code semantics, generates optimal solutions, and provides educational insights.
    """,
    examples=[
        [
            "def find_max(numbers):\n    return max(numbers)",
            "Find the maximum number in a list",
            True
        ],
        [
            "def find_min(arr):\n    minimum = arr[0]\n    for i in range(1, len(arr)):\n        if arr[i] < minimum:\n            minimum = arr[i]\n    return minimum",
            "Find the minimum number in an array", 
            True
        ],
        [
            "def calculate_sum(nums):\n    total = 0\n    for num in nums:\n        total += num\n    return total",
            "Calculate the sum of all numbers in a list",
            True
        ]
    ],
    theme=gr.themes.Soft(),
    analytics_enabled=False
)

# Launch the interface
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0", 
        server_port=7860
    )