File size: 1,449 Bytes
228b24d
 
 
fd778e9
228b24d
fd778e9
5a827a5
 
 
 
 
 
228b24d
5a827a5
228b24d
5a827a5
228b24d
 
5a827a5
228b24d
 
5a827a5
228b24d
 
 
5a827a5
 
228b24d
 
 
5a827a5
228b24d
15aed8d
 
 
 
 
 
5a827a5
15aed8d
 
5a827a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import streamlit as st
from transformers import pipeline

# Function to load the translation pipeline based on the target language
@st.cache_resource
def load_translation_pipeline(target_language):
    if target_language == 'French':
        model_name = 'Helsinki-NLP/opus-mt-en-fr'
    elif target_language == 'Spanish':
        model_name = 'Helsinki-NLP/opus-mt-en-es'
    elif target_language == 'German':
        model_name = 'Helsinki-NLP/opus-mt-en-de'
    else:
        st.error('Target language not supported!')
        return None
    return pipeline('translation', model=model_name)

# Streamlit app layout
st.title('Language Translator')

# Input text to translate
text = st.text_area('Enter text in English to translate:')

# Select target language
target_language = st.selectbox(
    'Select target language:',
    ['French', 'Spanish', 'German']  # Add more languages if needed
)

# Translate button
if st.button('Translate'):
    if text:
        # Load the translation pipeline based on selected language
        translation_pipeline = load_translation_pipeline(target_language)
        if translation_pipeline:
            # Perform translation
            translation = translation_pipeline(text)
            translated_text = translation[0]['translation_text']
            st.write(f'**Translated text in {target_language}:**')
            st.write(translated_text)
    else:
        st.error('Please enter text to translate.')