Spaces:
Runtime error
Runtime error
File size: 10,965 Bytes
d39bedc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from gtts import gTTS
import io
import tempfile
import os
import json
# Configuration (since we don't have the config.py file)
MODEL_CONFIG = {
"models": {
"granite-3b": "ibm-granite/granite-3b-code-base",
"granite-8b": "ibm-granite/granite-8b-code-base"
},
"generation_params": {
"max_new_tokens": 512,
"temperature": 0.7,
"do_sample": True,
"pad_token_id": None
}
}
TTS_CONFIG = {
"engine": "gtts",
"voice_speed": 150,
"voice_volume": 0.9
}
TONE_PROMPTS = {
"Neutral": "Rewrite the following text in a clear, neutral tone suitable for audiobook narration:",
"Suspenseful": "Rewrite the following text with suspenseful, engaging language that builds tension:",
"Inspiring": "Rewrite the following text in an inspiring, motivational tone that uplifts the reader:"
}
# Global variables to store model
model = None
tokenizer = None
model_loaded = False
def load_granite_model(model_name="granite-3b"):
"""Load IBM Granite model locally"""
global model, tokenizer, model_loaded
model_id = MODEL_CONFIG["models"][model_name]
try:
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
model_loaded = True
return "✅ Model loaded successfully!"
except Exception as e:
model_loaded = False
return f"❌ Error loading model: {str(e)}"
def rewrite_text_with_granite(text, tone):
"""Rewrite text using local Granite model"""
global model, tokenizer, model_loaded
if not model_loaded or model is None or tokenizer is None:
return text
try:
# Create prompt
prompt = f"{TONE_PROMPTS[tone]}\n\nOriginal text: {text}\n\nRewritten text:"
# Tokenize
inputs = tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=1024
)
# Set pad_token_id for generation
generation_params = MODEL_CONFIG["generation_params"].copy()
generation_params["pad_token_id"] = tokenizer.pad_token_id
# Generate
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
**generation_params,
attention_mask=inputs.attention_mask
)
# Decode
generated_text = tokenizer.decode(
outputs[0],
skip_special_tokens=True
)
# Extract only the rewritten part
if "Rewritten text:" in generated_text:
rewritten = generated_text.split("Rewritten text:")[-1].strip()
else:
rewritten = generated_text[len(prompt):].strip()
return rewritten if rewritten else text
except Exception as e:
return f"Error rewriting text: {str(e)}"
def generate_audio_gtts(text, language='en'):
"""Generate audio using Google Text-to-Speech"""
try:
tts = gTTS(text=text, lang=language, slow=False)
# Save to temporary file and return path
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as tmp_file:
tts.save(tmp_file.name)
return tmp_file.name
except Exception as e:
return None
def process_audiobook(input_text, uploaded_file, tone, model_choice):
"""Main processing function"""
global model_loaded
# Check if model is loaded
if not model_loaded:
return (
"❌ Please load the AI model first!",
None,
None,
"Please click 'Load Model' button first."
)
# Determine input text
text_to_process = ""
if uploaded_file is not None:
try:
# Read uploaded file
content = uploaded_file.read()
if isinstance(content, bytes):
text_to_process = content.decode('utf-8')
else:
text_to_process = str(content)
except Exception as e:
return f"Error reading file: {str(e)}", None, None, ""
elif input_text:
text_to_process = input_text
else:
return "Please provide text input or upload a file.", None, None, ""
# Truncate if too long
if len(text_to_process) > 2000:
text_to_process = text_to_process[:2000]
status_msg = "⚠️ Text truncated to 2000 characters for optimal processing."
else:
status_msg = f"✅ Processing {len(text_to_process)} characters."
# Rewrite text with AI
try:
rewritten_text = rewrite_text_with_granite(text_to_process, tone)
except Exception as e:
return f"Error in text rewriting: {str(e)}", None, None, ""
# Generate audio
try:
audio_file_path = generate_audio_gtts(rewritten_text)
if audio_file_path is None:
return status_msg, text_to_process, rewritten_text, "❌ Failed to generate audio."
except Exception as e:
return status_msg, text_to_process, rewritten_text, f"Error generating audio: {str(e)}"
return (
status_msg,
text_to_process,
rewritten_text,
audio_file_path
)
def get_model_status():
"""Get current model status"""
global model_loaded
if model_loaded:
device = "GPU" if torch.cuda.is_available() else "CPU"
return f"✅ Model loaded on {device}"
else:
return "❌ Model not loaded"
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="EchoVerse - Local AI Audiobook Creator",
theme=gr.themes.Soft(),
css="""
.gradio-container {
font-family: 'Arial', sans-serif;
}
.main-header {
text-align: center;
color: #2E86AB;
margin-bottom: 20px;
}
.status-box {
padding: 10px;
border-radius: 5px;
margin: 10px 0;
}
"""
) as demo:
# Header
gr.HTML("""
<div class="main-header">
<h1>��� EchoVerse Local</h1>
<h3>Transform Text into Expressive Audiobooks with Local AI</h3>
<p><i>Powered by IBM Granite 3B - No internet required for AI processing!</i></p>
</div>
""")
# Model Setup Section
with gr.Group():
gr.HTML("<h2>��� AI Model Setup</h2>")
with gr.Row():
model_choice = gr.Dropdown(
choices=list(MODEL_CONFIG["models"].keys()),
value="granite-3b",
label="Choose Granite Model",
info="3B model is recommended for most computers. 8B requires more RAM."
)
load_btn = gr.Button("Load Model", variant="primary")
model_status = gr.Textbox(
label="Model Status",
value="❌ Model not loaded",
interactive=False
)
# Input Section
with gr.Group():
gr.HTML("<h2>��� Input Your Content</h2>")
uploaded_file = gr.File(
label="Upload a text file",
file_types=[".txt"],
type="binary"
)
input_text = gr.Textbox(
label="Or paste your text here:",
lines=8,
placeholder="Enter the text you want to convert to an audiobook...",
max_lines=15
)
# Configuration Section
with gr.Group():
gr.HTML("<h2>⚙️ Audio Configuration</h2>")
with gr.Row():
tone = gr.Dropdown(
choices=["Neutral", "Suspenseful", "Inspiring"],
value="Neutral",
label="Select Tone",
info="Choose how you want the text to be rewritten"
)
# Generate Button
generate_btn = gr.Button("��� Generate Audiobook", variant="primary", size="lg")
# Results Section
with gr.Group():
gr.HTML("<h2>��� Results</h2>")
status_output = gr.Textbox(
label="Status",
interactive=False
)
with gr.Row():
original_text = gr.Textbox(
label="Original Text",
lines=10,
interactive=False
)
rewritten_text = gr.Textbox(
label="Rewritten Text",
lines=10,
interactive=False
)
# Audio Output
gr.HTML("<h2>��� Your Audiobook</h2>")
audio_output = gr.Audio(
label="Generated Audiobook",
type="filepath"
)
# System Info
with gr.Group():
gr.HTML("<h2>��� System Info</h2>")
system_info = gr.HTML(f"""
<div>
<p><strong>GPU Available:</strong> {'✅ Yes' if torch.cuda.is_available() else '❌ No (CPU only)'}</p>
<p><strong>TTS Engine:</strong> {TTS_CONFIG['engine']}</p>
</div>
<h3>��� Tips</h3>
<ul>
<li>First model load takes time</li>
<li>3B model: ~6GB RAM needed</li>
<li>8B model: ~16GB RAM needed</li>
<li>GPU greatly speeds up processing</li>
<li>gTTS requires internet connection</li>
</ul>
""")
# Event handlers
load_btn.click(
fn=load_granite_model,
inputs=[model_choice],
outputs=[model_status]
)
generate_btn.click(
fn=process_audiobook,
inputs=[input_text, uploaded_file, tone, model_choice],
outputs=[status_output, original_text, rewritten_text, audio_output]
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
|