File size: 19,842 Bytes
5488167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, List, Union

import torch
import torch.nn.functional as F
from torch import nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput, is_torch_version
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin


from .attention import LinearTransformerBlock, t2i_modulate
from .lyrics_utils.lyric_encoder import ConformerEncoder as LyricEncoder


def cross_norm(hidden_states, controlnet_input):
    # input N x T x c
    mean_hidden_states, std_hidden_states = hidden_states.mean(dim=(1,2), keepdim=True), hidden_states.std(dim=(1,2), keepdim=True)
    mean_controlnet_input, std_controlnet_input = controlnet_input.mean(dim=(1,2), keepdim=True), controlnet_input.std(dim=(1,2), keepdim=True)
    controlnet_input = (controlnet_input - mean_controlnet_input) * (std_hidden_states / (std_controlnet_input + 1e-12)) + mean_hidden_states
    return controlnet_input


# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2
class Qwen2RotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)

        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )


class T2IFinalLayer(nn.Module):
    """
    The final layer of Sana.
    """

    def __init__(self, hidden_size, patch_size=[16, 1], out_channels=256):
        super().__init__()
        self.norm_final = nn.RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True)
        self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5)
        self.out_channels = out_channels
        self.patch_size = patch_size

    def unpatchfy(
        self,
        hidden_states: torch.Tensor,
        width: int,
    ):
        # 4 unpatchify
        new_height, new_width = 1, hidden_states.size(1)
        hidden_states = hidden_states.reshape(
            shape=(hidden_states.shape[0], new_height, new_width, self.patch_size[0], self.patch_size[1], self.out_channels)
        ).contiguous()
        hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
        output = hidden_states.reshape(
            shape=(hidden_states.shape[0], self.out_channels, new_height * self.patch_size[0], new_width * self.patch_size[1])
        ).contiguous()
        if width > new_width:
            output = torch.nn.functional.pad(output, (0, width - new_width, 0, 0), 'constant', 0)
        elif width < new_width:
            output = output[:, :, :, :width]
        return output

    def forward(self, x, t, output_length):
        shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1)
        x = t2i_modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        # unpatchify
        output = self.unpatchfy(x, output_length)
        return output


class PatchEmbed(nn.Module):
    """2D Image to Patch Embedding"""

    def __init__(
        self,
        height=16,
        width=4096,
        patch_size=(16, 1),
        in_channels=8,
        embed_dim=1152,
        bias=True,
    ):
        super().__init__()
        patch_size_h, patch_size_w = patch_size
        self.early_conv_layers = nn.Sequential(
            nn.Conv2d(in_channels, in_channels*256, kernel_size=patch_size, stride=patch_size, padding=0, bias=bias),
            torch.nn.GroupNorm(num_groups=32, num_channels=in_channels*256, eps=1e-6, affine=True),
            nn.Conv2d(in_channels*256, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias)
        )
        self.patch_size = patch_size
        self.height, self.width = height // patch_size_h, width // patch_size_w
        self.base_size = self.width

    def forward(self, latent):
        # early convolutions, N x C x H x W -> N x 256 * sqrt(patch_size) x H/patch_size x W/patch_size
        latent = self.early_conv_layers(latent)
        latent = latent.flatten(2).transpose(1, 2)  # BCHW -> BNC
        return latent


@dataclass
class Transformer2DModelOutput(BaseOutput):

    sample: torch.FloatTensor
    proj_losses: Optional[Tuple[Tuple[str, torch.Tensor]]] = None


class ACEStepTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: Optional[int] = 8,
        num_layers: int = 28,
        inner_dim: int = 1536,
        attention_head_dim: int = 64,
        num_attention_heads: int = 24,
        mlp_ratio: float = 4.0,
        out_channels: int = 8,
        max_position: int = 32768,
        rope_theta: float = 1000000.0,
        speaker_embedding_dim: int = 512,
        text_embedding_dim: int = 768,
        ssl_encoder_depths: List[int] = [9, 9],
        ssl_names: List[str] = ["mert", "m-hubert"],
        ssl_latent_dims: List[int] = [1024, 768],
        lyric_encoder_vocab_size: int = 6681,
        lyric_hidden_size: int = 1024,
        patch_size: List[int] = [16, 1],
        max_height: int = 16,
        max_width: int = 4096,
        **kwargs,
    ):
        super().__init__()

        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim
        self.inner_dim = inner_dim
        self.out_channels = out_channels
        self.max_position = max_position
        self.patch_size = patch_size

        self.rope_theta = rope_theta

        self.rotary_emb = Qwen2RotaryEmbedding(
            dim=self.attention_head_dim,
            max_position_embeddings=self.max_position,
            base=self.rope_theta,
        )

        # 2. Define input layers
        self.in_channels = in_channels

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                LinearTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    mlp_ratio=mlp_ratio,
                    add_cross_attention=True,
                    add_cross_attention_dim=self.inner_dim,
                )
                for i in range(self.config.num_layers)
            ]
        )
        self.num_layers = num_layers

        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim)
        self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(self.inner_dim, 6 * self.inner_dim, bias=True))

        # speaker
        self.speaker_embedder = nn.Linear(speaker_embedding_dim, self.inner_dim)

        # genre
        self.genre_embedder = nn.Linear(text_embedding_dim, self.inner_dim)

        # lyric
        self.lyric_embs = nn.Embedding(lyric_encoder_vocab_size, lyric_hidden_size)
        self.lyric_encoder = LyricEncoder(input_size=lyric_hidden_size, static_chunk_size=0)
        self.lyric_proj = nn.Linear(lyric_hidden_size, self.inner_dim)

        projector_dim = 2 * self.inner_dim

        self.projectors = nn.ModuleList([
            nn.Sequential(
                nn.Linear(self.inner_dim, projector_dim),
                nn.SiLU(),
                nn.Linear(projector_dim, projector_dim),
                nn.SiLU(),
                nn.Linear(projector_dim, ssl_dim),
            ) for ssl_dim in ssl_latent_dims
        ])

        self.ssl_latent_dims = ssl_latent_dims
        self.ssl_encoder_depths = ssl_encoder_depths

        self.cosine_loss = torch.nn.CosineEmbeddingLoss(margin=0.0, reduction='mean')
        self.ssl_names = ssl_names

        self.proj_in = PatchEmbed(
            height=max_height,
            width=max_width,
            patch_size=patch_size,
            embed_dim=self.inner_dim,
            bias=True,
        )

        self.final_layer = T2IFinalLayer(self.inner_dim, patch_size=patch_size, out_channels=out_channels)
        self.gradient_checkpointing = False

    # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
    def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
        """
        Sets the attention processor to use [feed forward
        chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).

        Parameters:
            chunk_size (`int`, *optional*):
                The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
                over each tensor of dim=`dim`.
            dim (`int`, *optional*, defaults to `0`):
                The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
                or dim=1 (sequence length).
        """
        if dim not in [0, 1]:
            raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

        # By default chunk size is 1
        chunk_size = chunk_size or 1

        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, chunk_size, dim)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward_lyric_encoder(
        self,
        lyric_token_idx: Optional[torch.LongTensor] = None,
        lyric_mask: Optional[torch.LongTensor] = None,
    ):
        # N x T x D
        lyric_embs = self.lyric_embs(lyric_token_idx)
        prompt_prenet_out, _mask = self.lyric_encoder(lyric_embs, lyric_mask, decoding_chunk_size=1, num_decoding_left_chunks=-1)
        prompt_prenet_out = self.lyric_proj(prompt_prenet_out)
        return prompt_prenet_out

    def encode(
        self,
        encoder_text_hidden_states: Optional[torch.Tensor] = None,
        text_attention_mask: Optional[torch.LongTensor] = None,
        speaker_embeds: Optional[torch.FloatTensor] = None,
        lyric_token_idx: Optional[torch.LongTensor] = None,
        lyric_mask: Optional[torch.LongTensor] = None,
    ):

        bs = encoder_text_hidden_states.shape[0]
        device = encoder_text_hidden_states.device
        
        # speaker embedding
        encoder_spk_hidden_states = self.speaker_embedder(speaker_embeds).unsqueeze(1)
        speaker_mask = torch.ones(bs, 1, device=device)

        # genre embedding
        encoder_text_hidden_states = self.genre_embedder(encoder_text_hidden_states)

        # lyric
        encoder_lyric_hidden_states = self.forward_lyric_encoder(
            lyric_token_idx=lyric_token_idx,
            lyric_mask=lyric_mask,
        )

        encoder_hidden_states = torch.cat([encoder_spk_hidden_states, encoder_text_hidden_states, encoder_lyric_hidden_states], dim=1)
        encoder_hidden_mask = torch.cat([speaker_mask, text_attention_mask, lyric_mask], dim=1)
        return encoder_hidden_states, encoder_hidden_mask

    def decode(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        encoder_hidden_mask: torch.Tensor,
        timestep: Optional[torch.Tensor],
        ssl_hidden_states: Optional[List[torch.Tensor]] = None,
        output_length: int = 0,
        block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
        controlnet_scale: Union[float, torch.Tensor] = 1.0,
        return_dict: bool = True,
    ):

        embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
        temb = self.t_block(embedded_timestep)

        hidden_states = self.proj_in(hidden_states)

        # controlnet logic
        if block_controlnet_hidden_states is not None:
            control_condi = cross_norm(hidden_states, block_controlnet_hidden_states)
            hidden_states = hidden_states + control_condi * controlnet_scale

        inner_hidden_states = []

        rotary_freqs_cis = self.rotary_emb(hidden_states, seq_len=hidden_states.shape[1])
        encoder_rotary_freqs_cis = self.rotary_emb(encoder_hidden_states, seq_len=encoder_hidden_states.shape[1])

        for index_block, block in enumerate(self.transformer_blocks):

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states=hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_hidden_mask,
                    rotary_freqs_cis=rotary_freqs_cis,
                    rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
                    temb=temb,
                    **ckpt_kwargs,
                )

            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_hidden_mask,
                    rotary_freqs_cis=rotary_freqs_cis,
                    rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
                    temb=temb,
                )

            for ssl_encoder_depth in self.ssl_encoder_depths:
                if index_block == ssl_encoder_depth:
                    inner_hidden_states.append(hidden_states)

        proj_losses = []
        if len(inner_hidden_states) > 0 and ssl_hidden_states is not None and len(ssl_hidden_states) > 0:

            for inner_hidden_state, projector, ssl_hidden_state, ssl_name in zip(inner_hidden_states, self.projectors, ssl_hidden_states, self.ssl_names):
                if ssl_hidden_state is None:
                    continue
                # 1. N x T x D1 -> N x D x D2
                est_ssl_hidden_state = projector(inner_hidden_state)
                # 3. projection loss
                bs = inner_hidden_state.shape[0]
                proj_loss = 0.0
                for i, (z, z_tilde) in enumerate(zip(ssl_hidden_state, est_ssl_hidden_state)):
                    # 2. interpolate
                    z_tilde = F.interpolate(z_tilde.unsqueeze(0).transpose(1, 2), size=len(z), mode='linear', align_corners=False).transpose(1, 2).squeeze(0)

                    z_tilde = torch.nn.functional.normalize(z_tilde, dim=-1)
                    z = torch.nn.functional.normalize(z, dim=-1)
                    # T x d -> T x 1 -> 1
                    target = torch.ones(z.shape[0], device=z.device)
                    proj_loss += self.cosine_loss(z, z_tilde, target)
                proj_losses.append((ssl_name, proj_loss / bs))

        output = self.final_layer(hidden_states, embedded_timestep, output_length)
        if not return_dict:
            return (output, proj_losses)

        return Transformer2DModelOutput(sample=output, proj_losses=proj_losses)

    # @torch.compile
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        encoder_text_hidden_states: Optional[torch.Tensor] = None,
        text_attention_mask: Optional[torch.LongTensor] = None,
        speaker_embeds: Optional[torch.FloatTensor] = None,
        lyric_token_idx: Optional[torch.LongTensor] = None,
        lyric_mask: Optional[torch.LongTensor] = None,
        timestep: Optional[torch.Tensor] = None,
        ssl_hidden_states: Optional[List[torch.Tensor]] = None,
        block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
        controlnet_scale: Union[float, torch.Tensor] = 1.0,
        return_dict: bool = True,
    ):
        encoder_hidden_states, encoder_hidden_mask = self.encode(
            encoder_text_hidden_states=encoder_text_hidden_states,
            text_attention_mask=text_attention_mask,
            speaker_embeds=speaker_embeds,
            lyric_token_idx=lyric_token_idx,
            lyric_mask=lyric_mask,
        )

        output_length = hidden_states.shape[-1]

        output = self.decode(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_hidden_mask=encoder_hidden_mask,
            timestep=timestep,
            ssl_hidden_states=ssl_hidden_states,
            output_length=output_length,
            block_controlnet_hidden_states=block_controlnet_hidden_states,
            controlnet_scale=controlnet_scale,
            return_dict=return_dict,
        )

        return output