Spaces:
Runtime error
Runtime error
from typing import Optional, Tuple, Union | |
import math | |
import torch | |
from torch import nn | |
class ConvolutionModule(nn.Module): | |
"""ConvolutionModule in Conformer model.""" | |
def __init__(self, | |
channels: int, | |
kernel_size: int = 15, | |
activation: nn.Module = nn.ReLU(), | |
norm: str = "batch_norm", | |
causal: bool = False, | |
bias: bool = True): | |
"""Construct an ConvolutionModule object. | |
Args: | |
channels (int): The number of channels of conv layers. | |
kernel_size (int): Kernel size of conv layers. | |
causal (int): Whether use causal convolution or not | |
""" | |
super().__init__() | |
self.pointwise_conv1 = nn.Conv1d( | |
channels, | |
2 * channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=bias, | |
) | |
# self.lorder is used to distinguish if it's a causal convolution, | |
# if self.lorder > 0: it's a causal convolution, the input will be | |
# padded with self.lorder frames on the left in forward. | |
# else: it's a symmetrical convolution | |
if causal: | |
padding = 0 | |
self.lorder = kernel_size - 1 | |
else: | |
# kernel_size should be an odd number for none causal convolution | |
assert (kernel_size - 1) % 2 == 0 | |
padding = (kernel_size - 1) // 2 | |
self.lorder = 0 | |
self.depthwise_conv = nn.Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
stride=1, | |
padding=padding, | |
groups=channels, | |
bias=bias, | |
) | |
assert norm in ['batch_norm', 'layer_norm'] | |
if norm == "batch_norm": | |
self.use_layer_norm = False | |
self.norm = nn.BatchNorm1d(channels) | |
else: | |
self.use_layer_norm = True | |
self.norm = nn.LayerNorm(channels) | |
self.pointwise_conv2 = nn.Conv1d( | |
channels, | |
channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=bias, | |
) | |
self.activation = activation | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
cache: torch.Tensor = torch.zeros((0, 0, 0)), | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Compute convolution module. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, channels). | |
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time), | |
(0, 0, 0) means fake mask. | |
cache (torch.Tensor): left context cache, it is only | |
used in causal convolution (#batch, channels, cache_t), | |
(0, 0, 0) meas fake cache. | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, channels). | |
""" | |
# exchange the temporal dimension and the feature dimension | |
x = x.transpose(1, 2) # (#batch, channels, time) | |
# mask batch padding | |
if mask_pad.size(2) > 0: # time > 0 | |
x.masked_fill_(~mask_pad, 0.0) | |
if self.lorder > 0: | |
if cache.size(2) == 0: # cache_t == 0 | |
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0) | |
else: | |
assert cache.size(0) == x.size(0) # equal batch | |
assert cache.size(1) == x.size(1) # equal channel | |
x = torch.cat((cache, x), dim=2) | |
assert (x.size(2) > self.lorder) | |
new_cache = x[:, :, -self.lorder:] | |
else: | |
# It's better we just return None if no cache is required, | |
# However, for JIT export, here we just fake one tensor instead of | |
# None. | |
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
# GLU mechanism | |
x = self.pointwise_conv1(x) # (batch, 2*channel, dim) | |
x = nn.functional.glu(x, dim=1) # (batch, channel, dim) | |
# 1D Depthwise Conv | |
x = self.depthwise_conv(x) | |
if self.use_layer_norm: | |
x = x.transpose(1, 2) | |
x = self.activation(self.norm(x)) | |
if self.use_layer_norm: | |
x = x.transpose(1, 2) | |
x = self.pointwise_conv2(x) | |
# mask batch padding | |
if mask_pad.size(2) > 0: # time > 0 | |
x.masked_fill_(~mask_pad, 0.0) | |
return x.transpose(1, 2), new_cache | |
class PositionwiseFeedForward(torch.nn.Module): | |
"""Positionwise feed forward layer. | |
FeedForward are appied on each position of the sequence. | |
The output dim is same with the input dim. | |
Args: | |
idim (int): Input dimenstion. | |
hidden_units (int): The number of hidden units. | |
dropout_rate (float): Dropout rate. | |
activation (torch.nn.Module): Activation function | |
""" | |
def __init__( | |
self, | |
idim: int, | |
hidden_units: int, | |
dropout_rate: float, | |
activation: torch.nn.Module = torch.nn.ReLU(), | |
): | |
"""Construct a PositionwiseFeedForward object.""" | |
super(PositionwiseFeedForward, self).__init__() | |
self.w_1 = torch.nn.Linear(idim, hidden_units) | |
self.activation = activation | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
self.w_2 = torch.nn.Linear(hidden_units, idim) | |
def forward(self, xs: torch.Tensor) -> torch.Tensor: | |
"""Forward function. | |
Args: | |
xs: input tensor (B, L, D) | |
Returns: | |
output tensor, (B, L, D) | |
""" | |
return self.w_2(self.dropout(self.activation(self.w_1(xs)))) | |
class Swish(torch.nn.Module): | |
"""Construct an Swish object.""" | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""Return Swish activation function.""" | |
return x * torch.sigmoid(x) | |
class MultiHeadedAttention(nn.Module): | |
"""Multi-Head Attention layer. | |
Args: | |
n_head (int): The number of heads. | |
n_feat (int): The number of features. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, | |
n_head: int, | |
n_feat: int, | |
dropout_rate: float, | |
key_bias: bool = True): | |
"""Construct an MultiHeadedAttention object.""" | |
super().__init__() | |
assert n_feat % n_head == 0 | |
# We assume d_v always equals d_k | |
self.d_k = n_feat // n_head | |
self.h = n_head | |
self.linear_q = nn.Linear(n_feat, n_feat) | |
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias) | |
self.linear_v = nn.Linear(n_feat, n_feat) | |
self.linear_out = nn.Linear(n_feat, n_feat) | |
self.dropout = nn.Dropout(p=dropout_rate) | |
def forward_qkv( | |
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Transform query, key and value. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
Returns: | |
torch.Tensor: Transformed query tensor, size | |
(#batch, n_head, time1, d_k). | |
torch.Tensor: Transformed key tensor, size | |
(#batch, n_head, time2, d_k). | |
torch.Tensor: Transformed value tensor, size | |
(#batch, n_head, time2, d_k). | |
""" | |
n_batch = query.size(0) | |
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) | |
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) | |
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) | |
q = q.transpose(1, 2) # (batch, head, time1, d_k) | |
k = k.transpose(1, 2) # (batch, head, time2, d_k) | |
v = v.transpose(1, 2) # (batch, head, time2, d_k) | |
return q, k, v | |
def forward_attention( | |
self, | |
value: torch.Tensor, | |
scores: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool) | |
) -> torch.Tensor: | |
"""Compute attention context vector. | |
Args: | |
value (torch.Tensor): Transformed value, size | |
(#batch, n_head, time2, d_k). | |
scores (torch.Tensor): Attention score, size | |
(#batch, n_head, time1, time2). | |
mask (torch.Tensor): Mask, size (#batch, 1, time2) or | |
(#batch, time1, time2), (0, 0, 0) means fake mask. | |
Returns: | |
torch.Tensor: Transformed value (#batch, time1, d_model) | |
weighted by the attention score (#batch, time1, time2). | |
""" | |
n_batch = value.size(0) | |
if mask.size(2) > 0: # time2 > 0 | |
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) | |
# For last chunk, time2 might be larger than scores.size(-1) | |
mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2) | |
scores = scores.masked_fill(mask, -float('inf')) | |
attn = torch.softmax(scores, dim=-1).masked_fill( | |
mask, 0.0) # (batch, head, time1, time2) | |
else: | |
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) | |
p_attn = self.dropout(attn) | |
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) | |
x = (x.transpose(1, 2).contiguous().view(n_batch, -1, | |
self.h * self.d_k) | |
) # (batch, time1, d_model) | |
return self.linear_out(x) # (batch, time1, d_model) | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
pos_emb: torch.Tensor = torch.empty(0), | |
cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Compute scaled dot product attention. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
(#batch, time1, time2). | |
1.When applying cross attention between decoder and encoder, | |
the batch padding mask for input is in (#batch, 1, T) shape. | |
2.When applying self attention of encoder, | |
the mask is in (#batch, T, T) shape. | |
3.When applying self attention of decoder, | |
the mask is in (#batch, L, L) shape. | |
4.If the different position in decoder see different block | |
of the encoder, such as Mocha, the passed in mask could be | |
in (#batch, L, T) shape. But there is no such case in current | |
CosyVoice. | |
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
Returns: | |
torch.Tensor: Output tensor (#batch, time1, d_model). | |
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
""" | |
q, k, v = self.forward_qkv(query, key, value) | |
if cache.size(0) > 0: | |
key_cache, value_cache = torch.split(cache, | |
cache.size(-1) // 2, | |
dim=-1) | |
k = torch.cat([key_cache, k], dim=2) | |
v = torch.cat([value_cache, v], dim=2) | |
new_cache = torch.cat((k, v), dim=-1) | |
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) | |
return self.forward_attention(v, scores, mask), new_cache | |
class RelPositionMultiHeadedAttention(MultiHeadedAttention): | |
"""Multi-Head Attention layer with relative position encoding. | |
Paper: https://arxiv.org/abs/1901.02860 | |
Args: | |
n_head (int): The number of heads. | |
n_feat (int): The number of features. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, | |
n_head: int, | |
n_feat: int, | |
dropout_rate: float, | |
key_bias: bool = True): | |
"""Construct an RelPositionMultiHeadedAttention object.""" | |
super().__init__(n_head, n_feat, dropout_rate, key_bias) | |
# linear transformation for positional encoding | |
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) | |
# these two learnable bias are used in matrix c and matrix d | |
# as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
torch.nn.init.xavier_uniform_(self.pos_bias_u) | |
torch.nn.init.xavier_uniform_(self.pos_bias_v) | |
def rel_shift(self, x: torch.Tensor) -> torch.Tensor: | |
"""Compute relative positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). | |
time1 means the length of query vector. | |
Returns: | |
torch.Tensor: Output tensor. | |
""" | |
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), | |
device=x.device, | |
dtype=x.dtype) | |
x_padded = torch.cat([zero_pad, x], dim=-1) | |
x_padded = x_padded.view(x.size()[0], | |
x.size()[1], | |
x.size(3) + 1, x.size(2)) | |
x = x_padded[:, :, 1:].view_as(x)[ | |
:, :, :, : x.size(-1) // 2 + 1 | |
] # only keep the positions from 0 to time2 | |
return x | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
pos_emb: torch.Tensor = torch.empty(0), | |
cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
(#batch, time1, time2), (0, 0, 0) means fake mask. | |
pos_emb (torch.Tensor): Positional embedding tensor | |
(#batch, time2, size). | |
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
Returns: | |
torch.Tensor: Output tensor (#batch, time1, d_model). | |
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
""" | |
q, k, v = self.forward_qkv(query, key, value) | |
q = q.transpose(1, 2) # (batch, time1, head, d_k) | |
if cache.size(0) > 0: | |
key_cache, value_cache = torch.split(cache, | |
cache.size(-1) // 2, | |
dim=-1) | |
k = torch.cat([key_cache, k], dim=2) | |
v = torch.cat([value_cache, v], dim=2) | |
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's | |
# non-trivial to calculate `next_cache_start` here. | |
new_cache = torch.cat((k, v), dim=-1) | |
n_batch_pos = pos_emb.size(0) | |
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) | |
p = p.transpose(1, 2) # (batch, head, time1, d_k) | |
# (batch, head, time1, d_k) | |
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) | |
# (batch, head, time1, d_k) | |
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) | |
# compute attention score | |
# first compute matrix a and matrix c | |
# as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
# (batch, head, time1, time2) | |
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) | |
# compute matrix b and matrix d | |
# (batch, head, time1, time2) | |
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) | |
# NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used | |
if matrix_ac.shape != matrix_bd.shape: | |
matrix_bd = self.rel_shift(matrix_bd) | |
scores = (matrix_ac + matrix_bd) / math.sqrt( | |
self.d_k) # (batch, head, time1, time2) | |
return self.forward_attention(v, scores, mask), new_cache | |
def subsequent_mask( | |
size: int, | |
device: torch.device = torch.device("cpu"), | |
) -> torch.Tensor: | |
"""Create mask for subsequent steps (size, size). | |
This mask is used only in decoder which works in an auto-regressive mode. | |
This means the current step could only do attention with its left steps. | |
In encoder, fully attention is used when streaming is not necessary and | |
the sequence is not long. In this case, no attention mask is needed. | |
When streaming is need, chunk-based attention is used in encoder. See | |
subsequent_chunk_mask for the chunk-based attention mask. | |
Args: | |
size (int): size of mask | |
str device (str): "cpu" or "cuda" or torch.Tensor.device | |
dtype (torch.device): result dtype | |
Returns: | |
torch.Tensor: mask | |
Examples: | |
>>> subsequent_mask(3) | |
[[1, 0, 0], | |
[1, 1, 0], | |
[1, 1, 1]] | |
""" | |
arange = torch.arange(size, device=device) | |
mask = arange.expand(size, size) | |
arange = arange.unsqueeze(-1) | |
mask = mask <= arange | |
return mask | |
def subsequent_chunk_mask( | |
size: int, | |
chunk_size: int, | |
num_left_chunks: int = -1, | |
device: torch.device = torch.device("cpu"), | |
) -> torch.Tensor: | |
"""Create mask for subsequent steps (size, size) with chunk size, | |
this is for streaming encoder | |
Args: | |
size (int): size of mask | |
chunk_size (int): size of chunk | |
num_left_chunks (int): number of left chunks | |
<0: use full chunk | |
>=0: use num_left_chunks | |
device (torch.device): "cpu" or "cuda" or torch.Tensor.device | |
Returns: | |
torch.Tensor: mask | |
Examples: | |
>>> subsequent_chunk_mask(4, 2) | |
[[1, 1, 0, 0], | |
[1, 1, 0, 0], | |
[1, 1, 1, 1], | |
[1, 1, 1, 1]] | |
""" | |
ret = torch.zeros(size, size, device=device, dtype=torch.bool) | |
for i in range(size): | |
if num_left_chunks < 0: | |
start = 0 | |
else: | |
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0) | |
ending = min((i // chunk_size + 1) * chunk_size, size) | |
ret[i, start:ending] = True | |
return ret | |
def add_optional_chunk_mask(xs: torch.Tensor, | |
masks: torch.Tensor, | |
use_dynamic_chunk: bool, | |
use_dynamic_left_chunk: bool, | |
decoding_chunk_size: int, | |
static_chunk_size: int, | |
num_decoding_left_chunks: int, | |
enable_full_context: bool = True): | |
""" Apply optional mask for encoder. | |
Args: | |
xs (torch.Tensor): padded input, (B, L, D), L for max length | |
mask (torch.Tensor): mask for xs, (B, 1, L) | |
use_dynamic_chunk (bool): whether to use dynamic chunk or not | |
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for | |
training. | |
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's | |
0: default for training, use random dynamic chunk. | |
<0: for decoding, use full chunk. | |
>0: for decoding, use fixed chunk size as set. | |
static_chunk_size (int): chunk size for static chunk training/decoding | |
if it's greater than 0, if use_dynamic_chunk is true, | |
this parameter will be ignored | |
num_decoding_left_chunks: number of left chunks, this is for decoding, | |
the chunk size is decoding_chunk_size. | |
>=0: use num_decoding_left_chunks | |
<0: use all left chunks | |
enable_full_context (bool): | |
True: chunk size is either [1, 25] or full context(max_len) | |
False: chunk size ~ U[1, 25] | |
Returns: | |
torch.Tensor: chunk mask of the input xs. | |
""" | |
# Whether to use chunk mask or not | |
if use_dynamic_chunk: | |
max_len = xs.size(1) | |
if decoding_chunk_size < 0: | |
chunk_size = max_len | |
num_left_chunks = -1 | |
elif decoding_chunk_size > 0: | |
chunk_size = decoding_chunk_size | |
num_left_chunks = num_decoding_left_chunks | |
else: | |
# chunk size is either [1, 25] or full context(max_len). | |
# Since we use 4 times subsampling and allow up to 1s(100 frames) | |
# delay, the maximum frame is 100 / 4 = 25. | |
chunk_size = torch.randint(1, max_len, (1, )).item() | |
num_left_chunks = -1 | |
if chunk_size > max_len // 2 and enable_full_context: | |
chunk_size = max_len | |
else: | |
chunk_size = chunk_size % 25 + 1 | |
if use_dynamic_left_chunk: | |
max_left_chunks = (max_len - 1) // chunk_size | |
num_left_chunks = torch.randint(0, max_left_chunks, | |
(1, )).item() | |
chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size, | |
num_left_chunks, | |
xs.device) # (L, L) | |
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) | |
chunk_masks = masks & chunk_masks # (B, L, L) | |
elif static_chunk_size > 0: | |
num_left_chunks = num_decoding_left_chunks | |
chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size, | |
num_left_chunks, | |
xs.device) # (L, L) | |
chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) | |
chunk_masks = masks & chunk_masks # (B, L, L) | |
else: | |
chunk_masks = masks | |
return chunk_masks | |
class ConformerEncoderLayer(nn.Module): | |
"""Encoder layer module. | |
Args: | |
size (int): Input dimension. | |
self_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` | |
instance can be used as the argument. | |
feed_forward (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward` instance can be used as the argument. | |
feed_forward_macaron (torch.nn.Module): Additional feed-forward module | |
instance. | |
`PositionwiseFeedForward` instance can be used as the argument. | |
conv_module (torch.nn.Module): Convolution module instance. | |
`ConvlutionModule` instance can be used as the argument. | |
dropout_rate (float): Dropout rate. | |
normalize_before (bool): | |
True: use layer_norm before each sub-block. | |
False: use layer_norm after each sub-block. | |
""" | |
def __init__( | |
self, | |
size: int, | |
self_attn: torch.nn.Module, | |
feed_forward: Optional[nn.Module] = None, | |
feed_forward_macaron: Optional[nn.Module] = None, | |
conv_module: Optional[nn.Module] = None, | |
dropout_rate: float = 0.1, | |
normalize_before: bool = True, | |
): | |
"""Construct an EncoderLayer object.""" | |
super().__init__() | |
self.self_attn = self_attn | |
self.feed_forward = feed_forward | |
self.feed_forward_macaron = feed_forward_macaron | |
self.conv_module = conv_module | |
self.norm_ff = nn.LayerNorm(size, eps=1e-5) # for the FNN module | |
self.norm_mha = nn.LayerNorm(size, eps=1e-5) # for the MHA module | |
if feed_forward_macaron is not None: | |
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5) | |
self.ff_scale = 0.5 | |
else: | |
self.ff_scale = 1.0 | |
if self.conv_module is not None: | |
self.norm_conv = nn.LayerNorm(size, eps=1e-5) # for the CNN module | |
self.norm_final = nn.LayerNorm( | |
size, eps=1e-5) # for the final output of the block | |
self.dropout = nn.Dropout(dropout_rate) | |
self.size = size | |
self.normalize_before = normalize_before | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Compute encoded features. | |
Args: | |
x (torch.Tensor): (#batch, time, size) | |
mask (torch.Tensor): Mask tensor for the input (#batch, time,time), | |
(0, 0, 0) means fake mask. | |
pos_emb (torch.Tensor): positional encoding, must not be None | |
for ConformerEncoderLayer. | |
mask_pad (torch.Tensor): batch padding mask used for conv module. | |
(#batch, 1,time), (0, 0, 0) means fake mask. | |
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE | |
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size. | |
cnn_cache (torch.Tensor): Convolution cache in conformer layer | |
(#batch=1, size, cache_t2) | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, size). | |
torch.Tensor: Mask tensor (#batch, time, time). | |
torch.Tensor: att_cache tensor, | |
(#batch=1, head, cache_t1 + time, d_k * 2). | |
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). | |
""" | |
# whether to use macaron style | |
if self.feed_forward_macaron is not None: | |
residual = x | |
if self.normalize_before: | |
x = self.norm_ff_macaron(x) | |
x = residual + self.ff_scale * self.dropout( | |
self.feed_forward_macaron(x)) | |
if not self.normalize_before: | |
x = self.norm_ff_macaron(x) | |
# multi-headed self-attention module | |
residual = x | |
if self.normalize_before: | |
x = self.norm_mha(x) | |
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, | |
att_cache) | |
x = residual + self.dropout(x_att) | |
if not self.normalize_before: | |
x = self.norm_mha(x) | |
# convolution module | |
# Fake new cnn cache here, and then change it in conv_module | |
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
if self.conv_module is not None: | |
residual = x | |
if self.normalize_before: | |
x = self.norm_conv(x) | |
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) | |
x = residual + self.dropout(x) | |
if not self.normalize_before: | |
x = self.norm_conv(x) | |
# feed forward module | |
residual = x | |
if self.normalize_before: | |
x = self.norm_ff(x) | |
x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) | |
if not self.normalize_before: | |
x = self.norm_ff(x) | |
if self.conv_module is not None: | |
x = self.norm_final(x) | |
return x, mask, new_att_cache, new_cnn_cache | |
class EspnetRelPositionalEncoding(torch.nn.Module): | |
"""Relative positional encoding module (new implementation). | |
Details can be found in https://github.com/espnet/espnet/pull/2816. | |
See : Appendix B in https://arxiv.org/abs/1901.02860 | |
Args: | |
d_model (int): Embedding dimension. | |
dropout_rate (float): Dropout rate. | |
max_len (int): Maximum input length. | |
""" | |
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000): | |
"""Construct an PositionalEncoding object.""" | |
super(EspnetRelPositionalEncoding, self).__init__() | |
self.d_model = d_model | |
self.xscale = math.sqrt(self.d_model) | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
self.pe = None | |
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
def extend_pe(self, x: torch.Tensor): | |
"""Reset the positional encodings.""" | |
if self.pe is not None: | |
# self.pe contains both positive and negative parts | |
# the length of self.pe is 2 * input_len - 1 | |
if self.pe.size(1) >= x.size(1) * 2 - 1: | |
if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
return | |
# Suppose `i` means to the position of query vecotr and `j` means the | |
# position of key vector. We use position relative positions when keys | |
# are to the left (i>j) and negative relative positions otherwise (i<j). | |
pe_positive = torch.zeros(x.size(1), self.d_model) | |
pe_negative = torch.zeros(x.size(1), self.d_model) | |
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
* -(math.log(10000.0) / self.d_model) | |
) | |
pe_positive[:, 0::2] = torch.sin(position * div_term) | |
pe_positive[:, 1::2] = torch.cos(position * div_term) | |
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) | |
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) | |
# Reserve the order of positive indices and concat both positive and | |
# negative indices. This is used to support the shifting trick | |
# as in https://arxiv.org/abs/1901.02860 | |
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) | |
pe_negative = pe_negative[1:].unsqueeze(0) | |
pe = torch.cat([pe_positive, pe_negative], dim=1) | |
self.pe = pe.to(device=x.device, dtype=x.dtype) | |
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \ | |
-> Tuple[torch.Tensor, torch.Tensor]: | |
"""Add positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, time, `*`). | |
Returns: | |
torch.Tensor: Encoded tensor (batch, time, `*`). | |
""" | |
self.extend_pe(x) | |
x = x * self.xscale | |
pos_emb = self.position_encoding(size=x.size(1), offset=offset) | |
return self.dropout(x), self.dropout(pos_emb) | |
def position_encoding(self, | |
offset: Union[int, torch.Tensor], | |
size: int) -> torch.Tensor: | |
""" For getting encoding in a streaming fashion | |
Attention!!!!! | |
we apply dropout only once at the whole utterance level in a none | |
streaming way, but will call this function several times with | |
increasing input size in a streaming scenario, so the dropout will | |
be applied several times. | |
Args: | |
offset (int or torch.tensor): start offset | |
size (int): required size of position encoding | |
Returns: | |
torch.Tensor: Corresponding encoding | |
""" | |
pos_emb = self.pe[ | |
:, | |
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size, | |
] | |
return pos_emb | |
class LinearEmbed(torch.nn.Module): | |
"""Linear transform the input without subsampling | |
Args: | |
idim (int): Input dimension. | |
odim (int): Output dimension. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, idim: int, odim: int, dropout_rate: float, | |
pos_enc_class: torch.nn.Module): | |
"""Construct an linear object.""" | |
super().__init__() | |
self.out = torch.nn.Sequential( | |
torch.nn.Linear(idim, odim), | |
torch.nn.LayerNorm(odim, eps=1e-5), | |
torch.nn.Dropout(dropout_rate), | |
) | |
self.pos_enc = pos_enc_class #rel_pos_espnet | |
def position_encoding(self, offset: Union[int, torch.Tensor], | |
size: int) -> torch.Tensor: | |
return self.pos_enc.position_encoding(offset, size) | |
def forward( | |
self, | |
x: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Input x. | |
Args: | |
x (torch.Tensor): Input tensor (#batch, time, idim). | |
x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
Returns: | |
torch.Tensor: linear input tensor (#batch, time', odim), | |
where time' = time . | |
torch.Tensor: linear input mask (#batch, 1, time'), | |
where time' = time . | |
""" | |
x = self.out(x) | |
x, pos_emb = self.pos_enc(x, offset) | |
return x, pos_emb | |
ATTENTION_CLASSES = { | |
"selfattn": MultiHeadedAttention, | |
"rel_selfattn": RelPositionMultiHeadedAttention, | |
} | |
ACTIVATION_CLASSES = { | |
"hardtanh": torch.nn.Hardtanh, | |
"tanh": torch.nn.Tanh, | |
"relu": torch.nn.ReLU, | |
"selu": torch.nn.SELU, | |
"swish": getattr(torch.nn, "SiLU", Swish), | |
"gelu": torch.nn.GELU, | |
} | |
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: | |
"""Make mask tensor containing indices of padded part. | |
See description of make_non_pad_mask. | |
Args: | |
lengths (torch.Tensor): Batch of lengths (B,). | |
Returns: | |
torch.Tensor: Mask tensor containing indices of padded part. | |
Examples: | |
>>> lengths = [5, 3, 2] | |
>>> make_pad_mask(lengths) | |
masks = [[0, 0, 0, 0 ,0], | |
[0, 0, 0, 1, 1], | |
[0, 0, 1, 1, 1]] | |
""" | |
batch_size = lengths.size(0) | |
max_len = max_len if max_len > 0 else lengths.max().item() | |
seq_range = torch.arange(0, | |
max_len, | |
dtype=torch.int64, | |
device=lengths.device) | |
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) | |
seq_length_expand = lengths.unsqueeze(-1) | |
mask = seq_range_expand >= seq_length_expand | |
return mask | |
#https://github.com/FunAudioLLM/CosyVoice/blob/main/examples/magicdata-read/cosyvoice/conf/cosyvoice.yaml | |
class ConformerEncoder(torch.nn.Module): | |
"""Conformer encoder module.""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int = 1024, | |
attention_heads: int = 16, | |
linear_units: int = 4096, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
attention_dropout_rate: float = 0.0, | |
input_layer: str = 'linear', | |
pos_enc_layer_type: str = 'rel_pos_espnet', | |
normalize_before: bool = True, | |
static_chunk_size: int = 1, # 1: causal_mask; 0: full_mask | |
use_dynamic_chunk: bool = False, | |
use_dynamic_left_chunk: bool = False, | |
positionwise_conv_kernel_size: int = 1, | |
macaron_style: bool =False, | |
selfattention_layer_type: str = "rel_selfattn", | |
activation_type: str = "swish", | |
use_cnn_module: bool = False, | |
cnn_module_kernel: int = 15, | |
causal: bool = False, | |
cnn_module_norm: str = "batch_norm", | |
key_bias: bool = True, | |
gradient_checkpointing: bool = False, | |
): | |
"""Construct ConformerEncoder | |
Args: | |
input_size to use_dynamic_chunk, see in BaseEncoder | |
positionwise_conv_kernel_size (int): Kernel size of positionwise | |
conv1d layer. | |
macaron_style (bool): Whether to use macaron style for | |
positionwise layer. | |
selfattention_layer_type (str): Encoder attention layer type, | |
the parameter has no effect now, it's just for configure | |
compatibility. #'rel_selfattn' | |
activation_type (str): Encoder activation function type. | |
use_cnn_module (bool): Whether to use convolution module. | |
cnn_module_kernel (int): Kernel size of convolution module. | |
causal (bool): whether to use causal convolution or not. | |
key_bias: whether use bias in attention.linear_k, False for whisper models. | |
""" | |
super().__init__() | |
self.output_size = output_size | |
self.embed = LinearEmbed(input_size, output_size, dropout_rate, | |
EspnetRelPositionalEncoding(output_size, positional_dropout_rate)) | |
self.normalize_before = normalize_before | |
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) | |
self.gradient_checkpointing = gradient_checkpointing | |
self.use_dynamic_chunk = use_dynamic_chunk | |
self.static_chunk_size = static_chunk_size | |
self.use_dynamic_chunk = use_dynamic_chunk | |
self.use_dynamic_left_chunk = use_dynamic_left_chunk | |
activation = ACTIVATION_CLASSES[activation_type]() | |
# self-attention module definition | |
encoder_selfattn_layer_args = ( | |
attention_heads, | |
output_size, | |
attention_dropout_rate, | |
key_bias, | |
) | |
# feed-forward module definition | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
dropout_rate, | |
activation, | |
) | |
# convolution module definition | |
convolution_layer_args = (output_size, cnn_module_kernel, activation, | |
cnn_module_norm, causal) | |
self.encoders = torch.nn.ModuleList([ | |
ConformerEncoderLayer( | |
output_size, | |
RelPositionMultiHeadedAttention( | |
*encoder_selfattn_layer_args), | |
PositionwiseFeedForward(*positionwise_layer_args), | |
PositionwiseFeedForward( | |
*positionwise_layer_args) if macaron_style else None, | |
ConvolutionModule( | |
*convolution_layer_args) if use_cnn_module else None, | |
dropout_rate, | |
normalize_before, | |
) for _ in range(num_blocks) | |
]) | |
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor) -> torch.Tensor: | |
for layer in self.encoders: | |
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) | |
return xs | |
def forward_layers_checkpointed(self, xs: torch.Tensor, | |
chunk_masks: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor) -> torch.Tensor: | |
for layer in self.encoders: | |
xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs, | |
chunk_masks, pos_emb, | |
mask_pad) | |
return xs | |
def forward( | |
self, | |
xs: torch.Tensor, | |
pad_mask: torch.Tensor, | |
decoding_chunk_size: int = 0, | |
num_decoding_left_chunks: int = -1, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Embed positions in tensor. | |
Args: | |
xs: padded input tensor (B, T, D) | |
xs_lens: input length (B) | |
decoding_chunk_size: decoding chunk size for dynamic chunk | |
0: default for training, use random dynamic chunk. | |
<0: for decoding, use full chunk. | |
>0: for decoding, use fixed chunk size as set. | |
num_decoding_left_chunks: number of left chunks, this is for decoding, | |
the chunk size is decoding_chunk_size. | |
>=0: use num_decoding_left_chunks | |
<0: use all left chunks | |
Returns: | |
encoder output tensor xs, and subsampled masks | |
xs: padded output tensor (B, T' ~= T/subsample_rate, D) | |
masks: torch.Tensor batch padding mask after subsample | |
(B, 1, T' ~= T/subsample_rate) | |
NOTE(xcsong): | |
We pass the `__call__` method of the modules instead of `forward` to the | |
checkpointing API because `__call__` attaches all the hooks of the module. | |
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 | |
""" | |
T = xs.size(1) | |
masks = pad_mask.to(torch.bool).unsqueeze(1) # (B, 1, T) | |
xs, pos_emb = self.embed(xs) | |
mask_pad = masks # (B, 1, T/subsample_rate) | |
chunk_masks = add_optional_chunk_mask(xs, masks, | |
self.use_dynamic_chunk, | |
self.use_dynamic_left_chunk, | |
decoding_chunk_size, | |
self.static_chunk_size, | |
num_decoding_left_chunks) | |
if self.gradient_checkpointing and self.training: | |
xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb, | |
mask_pad) | |
else: | |
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) | |
if self.normalize_before: | |
xs = self.after_norm(xs) | |
# Here we assume the mask is not changed in encoder layers, so just | |
# return the masks before encoder layers, and the masks will be used | |
# for cross attention with decoder later | |
return xs, masks | |