Spaces:
Runtime error
Runtime error
import librosa | |
import torch | |
from torch import nn | |
from functools import partial | |
from math import prod | |
from typing import Callable, Tuple, List | |
import numpy as np | |
import torch.nn.functional as F | |
from torch.nn import Conv1d | |
from torch.nn.utils import weight_norm | |
from torch.nn.utils.parametrize import remove_parametrizations as remove_weight_norm | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.loaders import FromOriginalModelMixin | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
try: | |
from music_log_mel import LogMelSpectrogram | |
except ImportError: | |
from .music_log_mel import LogMelSpectrogram | |
def drop_path( | |
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True | |
): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" # noqa: E501 | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * ( | |
x.ndim - 1 | |
) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0 and scale_by_keep: | |
random_tensor.div_(keep_prob) | |
return x * random_tensor | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501 | |
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
self.scale_by_keep = scale_by_keep | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
def extra_repr(self): | |
return f"drop_prob={round(self.drop_prob,3):0.3f}" | |
class LayerNorm(nn.Module): | |
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
with shape (batch_size, channels, height, width). | |
""" # noqa: E501 | |
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.data_format = data_format | |
if self.data_format not in ["channels_last", "channels_first"]: | |
raise NotImplementedError | |
self.normalized_shape = (normalized_shape,) | |
def forward(self, x): | |
if self.data_format == "channels_last": | |
return F.layer_norm( | |
x, self.normalized_shape, self.weight, self.bias, self.eps | |
) | |
elif self.data_format == "channels_first": | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None] * x + self.bias[:, None] | |
return x | |
class ConvNeXtBlock(nn.Module): | |
r"""ConvNeXt Block. There are two equivalent implementations: | |
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
We use (2) as we find it slightly faster in PyTorch | |
Args: | |
dim (int): Number of input channels. | |
drop_path (float): Stochastic depth rate. Default: 0.0 | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0. | |
kernel_size (int): Kernel size for depthwise conv. Default: 7. | |
dilation (int): Dilation for depthwise conv. Default: 1. | |
""" # noqa: E501 | |
def __init__( | |
self, | |
dim: int, | |
drop_path: float = 0.0, | |
layer_scale_init_value: float = 1e-6, | |
mlp_ratio: float = 4.0, | |
kernel_size: int = 7, | |
dilation: int = 1, | |
): | |
super().__init__() | |
self.dwconv = nn.Conv1d( | |
dim, | |
dim, | |
kernel_size=kernel_size, | |
padding=int(dilation * (kernel_size - 1) / 2), | |
groups=dim, | |
) # depthwise conv | |
self.norm = LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear( | |
dim, int(mlp_ratio * dim) | |
) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim) | |
self.gamma = ( | |
nn.Parameter(layer_scale_init_value * | |
torch.ones((dim)), requires_grad=True) | |
if layer_scale_init_value > 0 | |
else None | |
) | |
self.drop_path = DropPath( | |
drop_path) if drop_path > 0.0 else nn.Identity() | |
def forward(self, x, apply_residual: bool = True): | |
input = x | |
x = self.dwconv(x) | |
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C) | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L) | |
x = self.drop_path(x) | |
if apply_residual: | |
x = input + x | |
return x | |
class ParallelConvNeXtBlock(nn.Module): | |
def __init__(self, kernel_sizes: List[int], *args, **kwargs): | |
super().__init__() | |
self.blocks = nn.ModuleList( | |
[ | |
ConvNeXtBlock(kernel_size=kernel_size, *args, **kwargs) | |
for kernel_size in kernel_sizes | |
] | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return torch.stack( | |
[block(x, apply_residual=False) for block in self.blocks] + [x], | |
dim=1, | |
).sum(dim=1) | |
class ConvNeXtEncoder(nn.Module): | |
def __init__( | |
self, | |
input_channels=3, | |
depths=[3, 3, 9, 3], | |
dims=[96, 192, 384, 768], | |
drop_path_rate=0.0, | |
layer_scale_init_value=1e-6, | |
kernel_sizes: Tuple[int] = (7,), | |
): | |
super().__init__() | |
assert len(depths) == len(dims) | |
self.channel_layers = nn.ModuleList() | |
stem = nn.Sequential( | |
nn.Conv1d( | |
input_channels, | |
dims[0], | |
kernel_size=7, | |
padding=3, | |
padding_mode="replicate", | |
), | |
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"), | |
) | |
self.channel_layers.append(stem) | |
for i in range(len(depths) - 1): | |
mid_layer = nn.Sequential( | |
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), | |
nn.Conv1d(dims[i], dims[i + 1], kernel_size=1), | |
) | |
self.channel_layers.append(mid_layer) | |
block_fn = ( | |
partial(ConvNeXtBlock, kernel_size=kernel_sizes[0]) | |
if len(kernel_sizes) == 1 | |
else partial(ParallelConvNeXtBlock, kernel_sizes=kernel_sizes) | |
) | |
self.stages = nn.ModuleList() | |
drop_path_rates = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
] | |
cur = 0 | |
for i in range(len(depths)): | |
stage = nn.Sequential( | |
*[ | |
block_fn( | |
dim=dims[i], | |
drop_path=drop_path_rates[cur + j], | |
layer_scale_init_value=layer_scale_init_value, | |
) | |
for j in range(depths[i]) | |
] | |
) | |
self.stages.append(stage) | |
cur += depths[i] | |
self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first") | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv1d, nn.Linear)): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
def forward( | |
self, | |
x: torch.Tensor, | |
) -> torch.Tensor: | |
for channel_layer, stage in zip(self.channel_layers, self.stages): | |
x = channel_layer(x) | |
x = stage(x) | |
return self.norm(x) | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def get_padding(kernel_size, dilation=1): | |
return (kernel_size * dilation - dilation) // 2 | |
class ResBlock1(torch.nn.Module): | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super().__init__() | |
self.convs1 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]), | |
) | |
), | |
] | |
) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
] | |
) | |
self.convs2.apply(init_weights) | |
def forward(self, x): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.silu(x) | |
xt = c1(xt) | |
xt = F.silu(xt) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for conv in self.convs1: | |
remove_weight_norm(conv) | |
for conv in self.convs2: | |
remove_weight_norm(conv) | |
class HiFiGANGenerator(nn.Module): | |
def __init__( | |
self, | |
*, | |
hop_length: int = 512, | |
upsample_rates: Tuple[int] = (8, 8, 2, 2, 2), | |
upsample_kernel_sizes: Tuple[int] = (16, 16, 8, 2, 2), | |
resblock_kernel_sizes: Tuple[int] = (3, 7, 11), | |
resblock_dilation_sizes: Tuple[Tuple[int]] = ( | |
(1, 3, 5), (1, 3, 5), (1, 3, 5)), | |
num_mels: int = 128, | |
upsample_initial_channel: int = 512, | |
use_template: bool = True, | |
pre_conv_kernel_size: int = 7, | |
post_conv_kernel_size: int = 7, | |
post_activation: Callable = partial(nn.SiLU, inplace=True), | |
): | |
super().__init__() | |
assert ( | |
prod(upsample_rates) == hop_length | |
), f"hop_length must be {prod(upsample_rates)}" | |
self.conv_pre = weight_norm( | |
nn.Conv1d( | |
num_mels, | |
upsample_initial_channel, | |
pre_conv_kernel_size, | |
1, | |
padding=get_padding(pre_conv_kernel_size), | |
) | |
) | |
self.num_upsamples = len(upsample_rates) | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.noise_convs = nn.ModuleList() | |
self.use_template = use_template | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
c_cur = upsample_initial_channel // (2 ** (i + 1)) | |
self.ups.append( | |
weight_norm( | |
nn.ConvTranspose1d( | |
upsample_initial_channel // (2**i), | |
upsample_initial_channel // (2 ** (i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
if not use_template: | |
continue | |
if i + 1 < len(upsample_rates): | |
stride_f0 = np.prod(upsample_rates[i + 1:]) | |
self.noise_convs.append( | |
Conv1d( | |
1, | |
c_cur, | |
kernel_size=stride_f0 * 2, | |
stride=stride_f0, | |
padding=stride_f0 // 2, | |
) | |
) | |
else: | |
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = upsample_initial_channel // (2 ** (i + 1)) | |
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes): | |
self.resblocks.append(ResBlock1(ch, k, d)) | |
self.activation_post = post_activation() | |
self.conv_post = weight_norm( | |
nn.Conv1d( | |
ch, | |
1, | |
post_conv_kernel_size, | |
1, | |
padding=get_padding(post_conv_kernel_size), | |
) | |
) | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
def forward(self, x, template=None): | |
x = self.conv_pre(x) | |
for i in range(self.num_upsamples): | |
x = F.silu(x, inplace=True) | |
x = self.ups[i](x) | |
if self.use_template: | |
x = x + self.noise_convs[i](template) | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
x = self.activation_post(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
def remove_weight_norm(self): | |
for up in self.ups: | |
remove_weight_norm(up) | |
for block in self.resblocks: | |
block.remove_weight_norm() | |
remove_weight_norm(self.conv_pre) | |
remove_weight_norm(self.conv_post) | |
class ADaMoSHiFiGANV1(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
def __init__( | |
self, | |
input_channels: int = 128, | |
depths: List[int] = [3, 3, 9, 3], | |
dims: List[int] = [128, 256, 384, 512], | |
drop_path_rate: float = 0.0, | |
kernel_sizes: Tuple[int] = (7,), | |
upsample_rates: Tuple[int] = (4, 4, 2, 2, 2, 2, 2), | |
upsample_kernel_sizes: Tuple[int] = (8, 8, 4, 4, 4, 4, 4), | |
resblock_kernel_sizes: Tuple[int] = (3, 7, 11, 13), | |
resblock_dilation_sizes: Tuple[Tuple[int]] = ( | |
(1, 3, 5), (1, 3, 5), (1, 3, 5), (1, 3, 5)), | |
num_mels: int = 512, | |
upsample_initial_channel: int = 1024, | |
use_template: bool = False, | |
pre_conv_kernel_size: int = 13, | |
post_conv_kernel_size: int = 13, | |
sampling_rate: int = 44100, | |
n_fft: int = 2048, | |
win_length: int = 2048, | |
hop_length: int = 512, | |
f_min: int = 40, | |
f_max: int = 16000, | |
n_mels: int = 128, | |
): | |
super().__init__() | |
self.backbone = ConvNeXtEncoder( | |
input_channels=input_channels, | |
depths=depths, | |
dims=dims, | |
drop_path_rate=drop_path_rate, | |
kernel_sizes=kernel_sizes, | |
) | |
self.head = HiFiGANGenerator( | |
hop_length=hop_length, | |
upsample_rates=upsample_rates, | |
upsample_kernel_sizes=upsample_kernel_sizes, | |
resblock_kernel_sizes=resblock_kernel_sizes, | |
resblock_dilation_sizes=resblock_dilation_sizes, | |
num_mels=num_mels, | |
upsample_initial_channel=upsample_initial_channel, | |
use_template=use_template, | |
pre_conv_kernel_size=pre_conv_kernel_size, | |
post_conv_kernel_size=post_conv_kernel_size, | |
) | |
self.sampling_rate = sampling_rate | |
self.mel_transform = LogMelSpectrogram( | |
sample_rate=sampling_rate, | |
n_fft=n_fft, | |
win_length=win_length, | |
hop_length=hop_length, | |
f_min=f_min, | |
f_max=f_max, | |
n_mels=n_mels, | |
) | |
self.eval() | |
def decode(self, mel): | |
y = self.backbone(mel) | |
y = self.head(y) | |
return y | |
def encode(self, x): | |
return self.mel_transform(x) | |
def forward(self, mel): | |
y = self.backbone(mel) | |
y = self.head(y) | |
return y | |
if __name__ == "__main__": | |
import soundfile as sf | |
x = "test_audio.flac" | |
model = ADaMoSHiFiGANV1.from_pretrained("./checkpoints/music_vocoder", local_files_only=True) | |
wav, sr = librosa.load(x, sr=44100, mono=True) | |
wav = torch.from_numpy(wav).float()[None] | |
mel = model.encode(wav) | |
wav = model.decode(mel)[0].mT | |
sf.write("test_audio_vocoder_rec.flac", wav.cpu().numpy(), 44100) | |