Spaces:
Running
Running
Add local CodonTransformer modules for custom ColiFormer functionality
Browse files- Removed CodonTransformer PyPI package dependency
- Added local CodonTransformer/ directory with custom modifications
- This includes your enhanced ColiFormer-specific functionality
- App now uses your custom CodonTransformer implementation instead of standard package
- Fixes ModuleNotFoundError: No module named 'CodonTransformer'
- CodonTransformer/CodonData.py +682 -0
- CodonTransformer/CodonEvaluation.py +575 -0
- CodonTransformer/CodonJupyter.py +311 -0
- CodonTransformer/CodonPostProcessing.py +83 -0
- CodonTransformer/CodonPrediction.py +1374 -0
- CodonTransformer/CodonUtils.py +871 -0
- CodonTransformer/__init__.py +1 -0
CodonTransformer/CodonData.py
ADDED
@@ -0,0 +1,682 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: CodonData.py
|
3 |
+
---------------------
|
4 |
+
Includes helper functions for preprocessing NCBI or Kazusa databases and
|
5 |
+
preparing the data for training and inference of the CodonTransformer model.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import json
|
9 |
+
import os
|
10 |
+
import random
|
11 |
+
from typing import Dict, List, Optional, Tuple, Union
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
import python_codon_tables as pct
|
15 |
+
from Bio import SeqIO
|
16 |
+
from Bio.Seq import Seq
|
17 |
+
from sklearn.utils import shuffle as sk_shuffle
|
18 |
+
from tqdm import tqdm
|
19 |
+
|
20 |
+
from CodonTransformer.CodonUtils import (
|
21 |
+
AMBIGUOUS_AMINOACID_MAP,
|
22 |
+
AMINO2CODON_TYPE,
|
23 |
+
AMINO_ACIDS,
|
24 |
+
ORGANISM2ID,
|
25 |
+
START_CODONS,
|
26 |
+
STOP_CODONS,
|
27 |
+
STOP_SYMBOL,
|
28 |
+
STOP_SYMBOLS,
|
29 |
+
ProteinConfig,
|
30 |
+
find_pattern_in_fasta,
|
31 |
+
get_taxonomy_id,
|
32 |
+
sort_amino2codon_skeleton,
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
def prepare_training_data(
|
37 |
+
dataset: Union[str, pd.DataFrame], output_file: str, shuffle: bool = True
|
38 |
+
) -> None:
|
39 |
+
"""
|
40 |
+
Prepare a JSON dataset for training the CodonTransformer model.
|
41 |
+
|
42 |
+
Input dataset should have columns below:
|
43 |
+
- dna: str (DNA sequence)
|
44 |
+
- protein: str (Protein sequence)
|
45 |
+
- organism: Union[int, str] (ID or Name of the organism)
|
46 |
+
|
47 |
+
The output JSON dataset will have the following format:
|
48 |
+
{"idx": 0, "codons": "M_ATG R_AGG L_TTG L_CTA R_CGA __TAG", "organism": 51}
|
49 |
+
{"idx": 1, "codons": "M_ATG K_AAG C_TGC F_TTT F_TTC __TAA", "organism": 59}
|
50 |
+
|
51 |
+
Args:
|
52 |
+
dataset (Union[str, pd.DataFrame]): Input dataset in CSV or DataFrame format.
|
53 |
+
output_file (str): Path to save the output JSON dataset.
|
54 |
+
shuffle (bool, optional): Whether to shuffle the dataset before saving.
|
55 |
+
Defaults to True.
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
None
|
59 |
+
"""
|
60 |
+
if isinstance(dataset, str):
|
61 |
+
dataset = pd.read_csv(dataset)
|
62 |
+
|
63 |
+
required_columns = {"dna", "protein", "organism"}
|
64 |
+
if not required_columns.issubset(dataset.columns):
|
65 |
+
raise ValueError(f"Input dataset must have columns: {required_columns}")
|
66 |
+
|
67 |
+
# Prepare the dataset for finetuning
|
68 |
+
dataset["codons"] = dataset.apply(
|
69 |
+
lambda row: get_merged_seq(row["protein"], row["dna"], separator="_"), axis=1
|
70 |
+
)
|
71 |
+
|
72 |
+
# Replace organism str with organism id using ORGANISM2ID
|
73 |
+
dataset["organism"] = dataset["organism"].apply(
|
74 |
+
lambda org: process_organism(org, ORGANISM2ID)
|
75 |
+
)
|
76 |
+
|
77 |
+
# Save the dataset to a JSON file
|
78 |
+
dataframe_to_json(dataset[["codons", "organism"]], output_file, shuffle=shuffle)
|
79 |
+
|
80 |
+
|
81 |
+
def dataframe_to_json(df: pd.DataFrame, output_file: str, shuffle: bool = True) -> None:
|
82 |
+
"""
|
83 |
+
Convert pandas DataFrame to JSON file format suitable for training CodonTransformer.
|
84 |
+
|
85 |
+
This function takes a preprocessed DataFrame and writes it to a JSON file
|
86 |
+
where each line is a JSON object representing a single record.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
df (pd.DataFrame): The input DataFrame with 'codons' and 'organism' columns.
|
90 |
+
output_file (str): Path to the output JSON file.
|
91 |
+
shuffle (bool, optional): Whether to shuffle the dataset before saving.
|
92 |
+
Defaults to True.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
None
|
96 |
+
|
97 |
+
Raises:
|
98 |
+
ValueError: If the required columns are not present in the DataFrame.
|
99 |
+
"""
|
100 |
+
required_columns = {"codons", "organism"}
|
101 |
+
if not required_columns.issubset(df.columns):
|
102 |
+
raise ValueError(f"DataFrame must contain columns: {required_columns}")
|
103 |
+
|
104 |
+
print(f"\nStarted writing to {output_file}...")
|
105 |
+
|
106 |
+
# Shuffle the DataFrame if requested
|
107 |
+
if shuffle:
|
108 |
+
df = sk_shuffle(df)
|
109 |
+
|
110 |
+
# Write the DataFrame to a JSON file
|
111 |
+
with open(output_file, "w") as f:
|
112 |
+
for idx, row in tqdm(
|
113 |
+
df.iterrows(), total=len(df), desc="Writing JSON...", unit=" records"
|
114 |
+
):
|
115 |
+
doc = {"idx": idx, "codons": row["codons"], "organism": row["organism"]}
|
116 |
+
f.write(json.dumps(doc) + "\n")
|
117 |
+
|
118 |
+
print(f"\nTotal Entries Saved: {len(df)}, JSON data saved to {output_file}")
|
119 |
+
|
120 |
+
|
121 |
+
def process_organism(organism: Union[str, int], organism_to_id: Dict[str, int]) -> int:
|
122 |
+
"""
|
123 |
+
Process and validate the organism input, converting it to a valid organism ID.
|
124 |
+
|
125 |
+
This function handles both string (organism name) and integer (organism ID) inputs.
|
126 |
+
It validates the input against a provided mapping of organism names to IDs.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
organism (Union[str, int]): Input organism, either as a name (str) or ID (int).
|
130 |
+
organism_to_id (Dict[str, int]): Dictionary mapping organism names to their
|
131 |
+
corresponding IDs.
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
int: The validated organism ID.
|
135 |
+
|
136 |
+
Raises:
|
137 |
+
ValueError: If the input is an invalid organism name or ID.
|
138 |
+
TypeError: If the input is neither a string nor an integer.
|
139 |
+
"""
|
140 |
+
if isinstance(organism, str):
|
141 |
+
if organism not in organism_to_id:
|
142 |
+
raise ValueError(f"Invalid organism name: {organism}")
|
143 |
+
return organism_to_id[organism]
|
144 |
+
|
145 |
+
elif isinstance(organism, int):
|
146 |
+
if organism not in organism_to_id.values():
|
147 |
+
raise ValueError(f"Invalid organism ID: {organism}")
|
148 |
+
return organism
|
149 |
+
|
150 |
+
raise TypeError(
|
151 |
+
f"Organism must be a string or integer, not {type(organism).__name__}"
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
def preprocess_protein_sequence(protein: str) -> str:
|
156 |
+
"""
|
157 |
+
Preprocess a protein sequence by cleaning, standardizing, and handling
|
158 |
+
ambiguous amino acids.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
protein (str): The input protein sequence.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
str: The preprocessed protein sequence.
|
165 |
+
|
166 |
+
Raises:
|
167 |
+
ValueError: If the protein sequence is invalid or if the configuration is invalid.
|
168 |
+
"""
|
169 |
+
if not protein:
|
170 |
+
raise ValueError("Protein sequence is empty.")
|
171 |
+
|
172 |
+
# Clean and standardize the protein sequence
|
173 |
+
protein = (
|
174 |
+
protein.upper().strip().replace("\n", "").replace(" ", "").replace("\t", "")
|
175 |
+
)
|
176 |
+
|
177 |
+
# Handle ambiguous amino acids based on the specified behavior
|
178 |
+
config = ProteinConfig()
|
179 |
+
ambiguous_aminoacid_map_override = config.get("ambiguous_aminoacid_map_override")
|
180 |
+
ambiguous_aminoacid_behavior = config.get("ambiguous_aminoacid_behavior")
|
181 |
+
ambiguous_aminoacid_map = AMBIGUOUS_AMINOACID_MAP.copy()
|
182 |
+
|
183 |
+
for aminoacid, standard_aminoacids in ambiguous_aminoacid_map_override.items():
|
184 |
+
ambiguous_aminoacid_map[aminoacid] = standard_aminoacids
|
185 |
+
|
186 |
+
if ambiguous_aminoacid_behavior == "raise_error":
|
187 |
+
if any(aminoacid in ambiguous_aminoacid_map for aminoacid in protein):
|
188 |
+
raise ValueError("Ambiguous amino acids found in protein sequence.")
|
189 |
+
elif ambiguous_aminoacid_behavior == "standardize_deterministic":
|
190 |
+
protein = "".join(
|
191 |
+
ambiguous_aminoacid_map.get(aminoacid, [aminoacid])[0]
|
192 |
+
for aminoacid in protein
|
193 |
+
)
|
194 |
+
elif ambiguous_aminoacid_behavior == "standardize_random":
|
195 |
+
protein = "".join(
|
196 |
+
random.choice(ambiguous_aminoacid_map.get(aminoacid, [aminoacid]))
|
197 |
+
for aminoacid in protein
|
198 |
+
)
|
199 |
+
else:
|
200 |
+
raise ValueError(
|
201 |
+
f"Invalid ambiguous_aminoacid_behavior: {ambiguous_aminoacid_behavior}."
|
202 |
+
)
|
203 |
+
|
204 |
+
# Check for sequence validity
|
205 |
+
if any(aminoacid not in AMINO_ACIDS + STOP_SYMBOLS for aminoacid in protein):
|
206 |
+
raise ValueError("Invalid characters in protein sequence.")
|
207 |
+
|
208 |
+
if protein[-1] not in AMINO_ACIDS + STOP_SYMBOLS:
|
209 |
+
raise ValueError(
|
210 |
+
"Protein sequence must end with `*`, or `_`, or an amino acid."
|
211 |
+
)
|
212 |
+
|
213 |
+
# Replace '*' at the end of protein with STOP_SYMBOL if present
|
214 |
+
if protein[-1] == "*":
|
215 |
+
protein = protein[:-1] + STOP_SYMBOL
|
216 |
+
|
217 |
+
# Add stop symbol to end of protein
|
218 |
+
if protein[-1] != STOP_SYMBOL:
|
219 |
+
protein += STOP_SYMBOL
|
220 |
+
|
221 |
+
return protein
|
222 |
+
|
223 |
+
|
224 |
+
def replace_ambiguous_codons(dna: str) -> str:
|
225 |
+
"""
|
226 |
+
Replaces ambiguous codons in a DNA sequence with "UNK".
|
227 |
+
|
228 |
+
Args:
|
229 |
+
dna (str): The DNA sequence to process.
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
str: The processed DNA sequence with ambiguous codons replaced by "UNK".
|
233 |
+
"""
|
234 |
+
result = []
|
235 |
+
dna = dna.upper()
|
236 |
+
|
237 |
+
# Check codons in DNA sequence
|
238 |
+
for i in range(0, len(dna), 3):
|
239 |
+
codon = dna[i : i + 3]
|
240 |
+
|
241 |
+
if len(codon) == 3 and all(nucleotide in "ATCG" for nucleotide in codon):
|
242 |
+
result.append(codon)
|
243 |
+
else:
|
244 |
+
result.append("UNK")
|
245 |
+
|
246 |
+
return "".join(result)
|
247 |
+
|
248 |
+
|
249 |
+
def preprocess_dna_sequence(dna: str) -> str:
|
250 |
+
"""
|
251 |
+
Cleans and preprocesses a DNA sequence by standardizing it and replacing
|
252 |
+
ambiguous codons.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
dna (str): The DNA sequence to preprocess.
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
str: The cleaned and preprocessed DNA sequence.
|
259 |
+
"""
|
260 |
+
if not dna:
|
261 |
+
return ""
|
262 |
+
|
263 |
+
# Clean and standardize the DNA sequence
|
264 |
+
dna = dna.upper().strip().replace("\n", "").replace(" ", "").replace("\t", "")
|
265 |
+
|
266 |
+
# Replace codons with ambigous nucleotides with "UNK"
|
267 |
+
dna = replace_ambiguous_codons(dna)
|
268 |
+
|
269 |
+
# Add unkown stop codon to end of DNA sequence if not present
|
270 |
+
if dna[-3:] not in STOP_CODONS:
|
271 |
+
dna += "UNK"
|
272 |
+
|
273 |
+
return dna
|
274 |
+
|
275 |
+
|
276 |
+
def get_merged_seq(protein: str, dna: str = "", separator: str = "_") -> str:
|
277 |
+
"""
|
278 |
+
Return the merged sequence of protein amino acids and DNA codons in the form
|
279 |
+
of tokens separated by space, where each token is composed of an amino acid +
|
280 |
+
separator + codon.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
protein (str): Protein sequence.
|
284 |
+
dna (str): DNA sequence.
|
285 |
+
separator (str): Separator between amino acid and codon.
|
286 |
+
|
287 |
+
Returns:
|
288 |
+
str: Merged sequence.
|
289 |
+
|
290 |
+
Example:
|
291 |
+
>>> get_merged_seq(protein="MAV_", dna="ATGGCTGTGTAA", separator="_")
|
292 |
+
'M_ATG A_GCT V_GTG __TAA'
|
293 |
+
|
294 |
+
>>> get_merged_seq(protein="QHH_", dna="", separator="_")
|
295 |
+
'Q_UNK H_UNK H_UNK __UNK'
|
296 |
+
"""
|
297 |
+
merged_seq = ""
|
298 |
+
|
299 |
+
# Prepare protein and dna sequences
|
300 |
+
dna = preprocess_dna_sequence(dna)
|
301 |
+
protein = preprocess_protein_sequence(protein)
|
302 |
+
|
303 |
+
# Check if the length of protein and dna sequences are equal
|
304 |
+
if len(dna) > 0 and len(protein) != len(dna) / 3:
|
305 |
+
raise ValueError(
|
306 |
+
'Length of protein (including stop symbol such as "_") and '
|
307 |
+
"the number of codons in DNA sequence (including stop codon) "
|
308 |
+
"must be equal."
|
309 |
+
)
|
310 |
+
|
311 |
+
# Merge protein and DNA sequences into tokens
|
312 |
+
for i, aminoacid in enumerate(protein):
|
313 |
+
merged_seq += f'{aminoacid}{separator}{dna[i * 3:i * 3 + 3] if dna else "UNK"} '
|
314 |
+
|
315 |
+
return merged_seq.strip()
|
316 |
+
|
317 |
+
|
318 |
+
def is_correct_seq(dna: str, protein: str, stop_symbol: str = STOP_SYMBOL) -> bool:
|
319 |
+
"""
|
320 |
+
Check if the given DNA and protein pair is correct, that is:
|
321 |
+
1. The length of dna is divisible by 3
|
322 |
+
2. There is an initiator codon in the beginning of dna
|
323 |
+
3. There is only one stop codon in the sequence
|
324 |
+
4. The only stop codon is the last codon
|
325 |
+
|
326 |
+
Note since in Codon Table 3, 'TGA' is interpreted as Triptophan (W),
|
327 |
+
there is a separate check to make sure those sequences are considered correct.
|
328 |
+
|
329 |
+
Args:
|
330 |
+
dna (str): DNA sequence.
|
331 |
+
protein (str): Protein sequence.
|
332 |
+
stop_symbol (str): Stop symbol.
|
333 |
+
|
334 |
+
Returns:
|
335 |
+
bool: True if the sequence is correct, False otherwise.
|
336 |
+
"""
|
337 |
+
return (
|
338 |
+
len(dna) % 3 == 0 # Check if DNA length is divisible by 3
|
339 |
+
and dna[:3].upper() in START_CODONS # Check for initiator codon
|
340 |
+
and protein[-1]
|
341 |
+
== stop_symbol # Check if the last protein symbol is the stop symbol
|
342 |
+
and protein.count(stop_symbol) == 1 # Check if there is only one stop symbol
|
343 |
+
and len(set(dna))
|
344 |
+
== 4 # Check if DNA consists of 4 unique nucleotides (A, T, C, G)
|
345 |
+
)
|
346 |
+
|
347 |
+
|
348 |
+
def get_amino_acid_sequence(
|
349 |
+
dna: str,
|
350 |
+
stop_symbol: str = "_",
|
351 |
+
codon_table: int = 1,
|
352 |
+
return_correct_seq: bool = False,
|
353 |
+
) -> Union[str, Tuple[str, bool]]:
|
354 |
+
"""
|
355 |
+
Return the translated protein sequence given a DNA sequence and codon table.
|
356 |
+
|
357 |
+
Args:
|
358 |
+
dna (str): DNA sequence.
|
359 |
+
stop_symbol (str): Stop symbol.
|
360 |
+
codon_table (int): Codon table number.
|
361 |
+
return_correct_seq (bool): Whether to return if the sequence is correct.
|
362 |
+
|
363 |
+
Returns:
|
364 |
+
Union[str, Tuple[str, bool]]: Protein sequence and correctness flag if
|
365 |
+
return_correct_seq is True, otherwise just the protein sequence.
|
366 |
+
"""
|
367 |
+
dna_seq = Seq(dna).strip()
|
368 |
+
|
369 |
+
# Translate the DNA sequence to a protein sequence
|
370 |
+
protein_seq = str(
|
371 |
+
dna_seq.translate(
|
372 |
+
stop_symbol=stop_symbol, # Symbol to use for stop codons
|
373 |
+
to_stop=False, # Translate the entire sequence, including any stop codons
|
374 |
+
cds=False, # Do not assume the input is a coding sequence
|
375 |
+
table=codon_table, # Codon table to use for translation
|
376 |
+
)
|
377 |
+
).strip()
|
378 |
+
|
379 |
+
return (
|
380 |
+
protein_seq
|
381 |
+
if not return_correct_seq
|
382 |
+
else (protein_seq, is_correct_seq(dna_seq, protein_seq, stop_symbol))
|
383 |
+
)
|
384 |
+
|
385 |
+
|
386 |
+
def read_fasta_file(
|
387 |
+
input_file: str,
|
388 |
+
save_to_file: Optional[str] = None,
|
389 |
+
organism: str = "",
|
390 |
+
buffer_size: int = 50000,
|
391 |
+
) -> pd.DataFrame:
|
392 |
+
"""
|
393 |
+
Read a FASTA file of DNA sequences and convert it to a Pandas DataFrame.
|
394 |
+
Optionally, save the DataFrame to a CSV file.
|
395 |
+
|
396 |
+
Args:
|
397 |
+
input_file (str): Path to the input FASTA file.
|
398 |
+
save_to_file (Optional[str]): Path to save the output DataFrame. If None,
|
399 |
+
data is only returned.
|
400 |
+
organism (str): Name of the organism. If empty, it will be extracted from
|
401 |
+
the FASTA description.
|
402 |
+
buffer_size (int): Number of records to process before writing to file.
|
403 |
+
|
404 |
+
Returns:
|
405 |
+
pd.DataFrame: DataFrame containing the DNA sequences if return_dataframe
|
406 |
+
is True, else None.
|
407 |
+
|
408 |
+
Raises:
|
409 |
+
FileNotFoundError: If the input file does not exist.
|
410 |
+
"""
|
411 |
+
if not os.path.exists(input_file):
|
412 |
+
raise FileNotFoundError(f"Input file not found: {input_file}")
|
413 |
+
|
414 |
+
buffer = []
|
415 |
+
columns = [
|
416 |
+
"dna",
|
417 |
+
"protein",
|
418 |
+
"correct_seq",
|
419 |
+
"organism",
|
420 |
+
"GeneID",
|
421 |
+
"description",
|
422 |
+
"tokenized",
|
423 |
+
]
|
424 |
+
|
425 |
+
# Initialize DataFrame to store all data if return_dataframe is True
|
426 |
+
all_data = pd.DataFrame(columns=columns)
|
427 |
+
|
428 |
+
with open(input_file, "r") as fasta_file:
|
429 |
+
for record in tqdm(
|
430 |
+
SeqIO.parse(fasta_file, "fasta"),
|
431 |
+
desc=f"Processing {organism}",
|
432 |
+
unit=" Records",
|
433 |
+
):
|
434 |
+
dna = str(record.seq).strip().upper() # Ensure uppercase DNA sequence
|
435 |
+
|
436 |
+
# Determine the organism from the record if not provided
|
437 |
+
current_organism = organism or find_pattern_in_fasta(
|
438 |
+
"organism", record.description
|
439 |
+
)
|
440 |
+
gene_id = find_pattern_in_fasta("GeneID", record.description)
|
441 |
+
|
442 |
+
# Get the appropriate codon table for the organism
|
443 |
+
codon_table = get_codon_table(current_organism)
|
444 |
+
|
445 |
+
# Translate DNA to protein sequence
|
446 |
+
protein, correct_seq = get_amino_acid_sequence(
|
447 |
+
dna,
|
448 |
+
stop_symbol=STOP_SYMBOL,
|
449 |
+
codon_table=codon_table,
|
450 |
+
return_correct_seq=True,
|
451 |
+
)
|
452 |
+
description = record.description.split("[", 1)[0].strip()
|
453 |
+
tokenized = get_merged_seq(protein, dna, separator=STOP_SYMBOL)
|
454 |
+
|
455 |
+
# Create a data row for the current sequence
|
456 |
+
data_row = {
|
457 |
+
"dna": dna,
|
458 |
+
"protein": protein,
|
459 |
+
"correct_seq": correct_seq,
|
460 |
+
"organism": current_organism,
|
461 |
+
"GeneID": gene_id,
|
462 |
+
"description": description,
|
463 |
+
"tokenized": tokenized,
|
464 |
+
}
|
465 |
+
buffer.append(data_row)
|
466 |
+
|
467 |
+
# Write buffer to CSV file when buffer size is reached
|
468 |
+
if save_to_file and len(buffer) >= buffer_size:
|
469 |
+
write_buffer_to_csv(buffer, save_to_file, columns)
|
470 |
+
buffer = []
|
471 |
+
|
472 |
+
all_data = pd.concat(
|
473 |
+
[all_data, pd.DataFrame([data_row])], ignore_index=True
|
474 |
+
)
|
475 |
+
|
476 |
+
# Write remaining buffer to CSV file
|
477 |
+
if save_to_file and buffer:
|
478 |
+
write_buffer_to_csv(buffer, save_to_file, columns)
|
479 |
+
|
480 |
+
return all_data
|
481 |
+
|
482 |
+
|
483 |
+
def write_buffer_to_csv(buffer: List[Dict], output_path: str, columns: List[str]):
|
484 |
+
"""Helper function to write buffer to CSV file."""
|
485 |
+
buffer_df = pd.DataFrame(buffer, columns=columns)
|
486 |
+
buffer_df.to_csv(
|
487 |
+
output_path,
|
488 |
+
mode="a",
|
489 |
+
header=(not os.path.exists(output_path)),
|
490 |
+
index=True,
|
491 |
+
)
|
492 |
+
|
493 |
+
|
494 |
+
def download_codon_frequencies_from_kazusa(
|
495 |
+
taxonomy_id: Optional[int] = None,
|
496 |
+
organism: Optional[str] = None,
|
497 |
+
taxonomy_reference: Optional[str] = None,
|
498 |
+
return_original_format: bool = False,
|
499 |
+
) -> AMINO2CODON_TYPE:
|
500 |
+
"""
|
501 |
+
Return the codon table of the given taxonomy ID from the Kazusa Database.
|
502 |
+
|
503 |
+
Args:
|
504 |
+
taxonomy_id (Optional[int]): Taxonomy ID.
|
505 |
+
organism (Optional[str]): Name of the organism.
|
506 |
+
taxonomy_reference (Optional[str]): Taxonomy reference.
|
507 |
+
return_original_format (bool): Whether to return in the original format.
|
508 |
+
|
509 |
+
Returns:
|
510 |
+
AMINO2CODON_TYPE: Codon table.
|
511 |
+
"""
|
512 |
+
if taxonomy_reference:
|
513 |
+
taxonomy_id = get_taxonomy_id(taxonomy_reference, organism=organism)
|
514 |
+
|
515 |
+
kazusa_amino2codon = pct.get_codons_table(table_name=taxonomy_id)
|
516 |
+
|
517 |
+
if return_original_format:
|
518 |
+
return kazusa_amino2codon
|
519 |
+
|
520 |
+
# Replace "*" with STOP_SYMBOL in the codon table
|
521 |
+
kazusa_amino2codon[STOP_SYMBOL] = kazusa_amino2codon.pop("*")
|
522 |
+
|
523 |
+
# Create amino2codon dictionary
|
524 |
+
amino2codon = {
|
525 |
+
aminoacid: (list(codon2freq.keys()), list(codon2freq.values()))
|
526 |
+
for aminoacid, codon2freq in kazusa_amino2codon.items()
|
527 |
+
}
|
528 |
+
|
529 |
+
return sort_amino2codon_skeleton(amino2codon)
|
530 |
+
|
531 |
+
|
532 |
+
def build_amino2codon_skeleton(organism: str) -> AMINO2CODON_TYPE:
|
533 |
+
"""
|
534 |
+
Return the empty skeleton of the amino2codon dictionary, needed for
|
535 |
+
get_codon_frequencies.
|
536 |
+
|
537 |
+
Args:
|
538 |
+
organism (str): Name of the organism.
|
539 |
+
|
540 |
+
Returns:
|
541 |
+
AMINO2CODON_TYPE: Empty amino2codon dictionary.
|
542 |
+
"""
|
543 |
+
amino2codon = {}
|
544 |
+
possible_codons = [f"{i}{j}{k}" for i in "ACGT" for j in "ACGT" for k in "ACGT"]
|
545 |
+
possible_aminoacids = get_amino_acid_sequence(
|
546 |
+
dna="".join(possible_codons),
|
547 |
+
codon_table=get_codon_table(organism),
|
548 |
+
return_correct_seq=False,
|
549 |
+
)
|
550 |
+
|
551 |
+
# Initialize the amino2codon skeleton with all possible codons and set their
|
552 |
+
# frequencies to 0
|
553 |
+
for i, (codon, amino) in enumerate(zip(possible_codons, possible_aminoacids)):
|
554 |
+
if amino not in amino2codon:
|
555 |
+
amino2codon[amino] = ([], [])
|
556 |
+
|
557 |
+
amino2codon[amino][0].append(codon)
|
558 |
+
amino2codon[amino][1].append(0)
|
559 |
+
|
560 |
+
# Sort the dictionary and each list of codon frequency alphabetically
|
561 |
+
amino2codon = sort_amino2codon_skeleton(amino2codon)
|
562 |
+
|
563 |
+
return amino2codon
|
564 |
+
|
565 |
+
|
566 |
+
def get_codon_frequencies(
|
567 |
+
dna_sequences: List[str],
|
568 |
+
protein_sequences: Optional[List[str]] = None,
|
569 |
+
organism: Optional[str] = None,
|
570 |
+
) -> AMINO2CODON_TYPE:
|
571 |
+
"""
|
572 |
+
Return a dictionary mapping each codon to its respective frequency based on
|
573 |
+
the collection of DNA sequences and protein sequences.
|
574 |
+
|
575 |
+
Args:
|
576 |
+
dna_sequences (List[str]): List of DNA sequences.
|
577 |
+
protein_sequences (Optional[List[str]]): List of protein sequences.
|
578 |
+
organism (Optional[str]): Name of the organism.
|
579 |
+
|
580 |
+
Returns:
|
581 |
+
AMINO2CODON_TYPE: Dictionary mapping each amino acid to a tuple of codons
|
582 |
+
and frequencies.
|
583 |
+
"""
|
584 |
+
if organism:
|
585 |
+
codon_table = get_codon_table(organism)
|
586 |
+
protein_sequences = [
|
587 |
+
get_amino_acid_sequence(
|
588 |
+
dna, codon_table=codon_table, return_correct_seq=False
|
589 |
+
)
|
590 |
+
for dna in dna_sequences
|
591 |
+
]
|
592 |
+
|
593 |
+
amino2codon = build_amino2codon_skeleton(organism)
|
594 |
+
|
595 |
+
# Count the frequencies of each codon for each amino acid
|
596 |
+
for dna, protein in zip(dna_sequences, protein_sequences):
|
597 |
+
for i, amino in enumerate(protein):
|
598 |
+
codon = dna[i * 3 : (i + 1) * 3]
|
599 |
+
codon_loc = amino2codon[amino][0].index(codon)
|
600 |
+
amino2codon[amino][1][codon_loc] += 1
|
601 |
+
|
602 |
+
# Normalize codon frequencies per amino acid so they sum to 1
|
603 |
+
amino2codon = {
|
604 |
+
amino: (codons, [freq / (sum(frequencies) + 1e-100) for freq in frequencies])
|
605 |
+
for amino, (codons, frequencies) in amino2codon.items()
|
606 |
+
}
|
607 |
+
|
608 |
+
return amino2codon
|
609 |
+
|
610 |
+
|
611 |
+
def get_organism_to_codon_frequencies(
|
612 |
+
dataset: pd.DataFrame, organisms: List[str]
|
613 |
+
) -> Dict[str, AMINO2CODON_TYPE]:
|
614 |
+
"""
|
615 |
+
Return a dictionary mapping each organism to their codon frequency distribution.
|
616 |
+
|
617 |
+
Args:
|
618 |
+
dataset (pd.DataFrame): DataFrame containing DNA sequences.
|
619 |
+
organisms (List[str]): List of organisms.
|
620 |
+
|
621 |
+
Returns:
|
622 |
+
Dict[str, AMINO2CODON_TYPE]: Dictionary mapping each organism to its codon
|
623 |
+
frequency distribution.
|
624 |
+
"""
|
625 |
+
organism2frequencies = {}
|
626 |
+
|
627 |
+
# Calculate codon frequencies for each organism in the dataset
|
628 |
+
for organism in tqdm(
|
629 |
+
organisms, desc="Calculating Codon Frequencies: ", unit="Organism"
|
630 |
+
):
|
631 |
+
organism_data = dataset.loc[dataset["organism"] == organism]
|
632 |
+
|
633 |
+
dna_sequences = organism_data["dna"].to_list()
|
634 |
+
protein_sequences = organism_data["protein"].to_list()
|
635 |
+
|
636 |
+
codon_frequencies = get_codon_frequencies(dna_sequences, protein_sequences)
|
637 |
+
organism2frequencies[organism] = codon_frequencies
|
638 |
+
|
639 |
+
return organism2frequencies
|
640 |
+
|
641 |
+
|
642 |
+
def get_codon_table(organism: str) -> int:
|
643 |
+
"""
|
644 |
+
Return the appropriate NCBI codon table for a given organism.
|
645 |
+
|
646 |
+
Args:
|
647 |
+
organism (str): Name of the organism.
|
648 |
+
|
649 |
+
Returns:
|
650 |
+
int: Codon table number.
|
651 |
+
"""
|
652 |
+
# Common codon table (Table 1) for many model organisms
|
653 |
+
if organism in [
|
654 |
+
"Arabidopsis thaliana",
|
655 |
+
"Caenorhabditis elegans",
|
656 |
+
"Chlamydomonas reinhardtii",
|
657 |
+
"Saccharomyces cerevisiae",
|
658 |
+
"Danio rerio",
|
659 |
+
"Drosophila melanogaster",
|
660 |
+
"Homo sapiens",
|
661 |
+
"Mus musculus",
|
662 |
+
"Nicotiana tabacum",
|
663 |
+
"Solanum tuberosum",
|
664 |
+
"Solanum lycopersicum",
|
665 |
+
"Oryza sativa",
|
666 |
+
"Glycine max",
|
667 |
+
"Zea mays",
|
668 |
+
]:
|
669 |
+
codon_table = 1
|
670 |
+
|
671 |
+
# Chloroplast codon table (Table 11)
|
672 |
+
elif organism in [
|
673 |
+
"Chlamydomonas reinhardtii chloroplast",
|
674 |
+
"Nicotiana tabacum chloroplast",
|
675 |
+
]:
|
676 |
+
codon_table = 11
|
677 |
+
|
678 |
+
# Default to Table 11 for other bacteria and archaea
|
679 |
+
else:
|
680 |
+
codon_table = 11
|
681 |
+
|
682 |
+
return codon_table
|
CodonTransformer/CodonEvaluation.py
ADDED
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: CodonEvaluation.py
|
3 |
+
---------------------------
|
4 |
+
Includes functions to calculate various evaluation metrics along with helper
|
5 |
+
functions.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Dict, List, Tuple, Optional
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
from CAI import CAI, relative_adaptiveness
|
12 |
+
from tqdm import tqdm
|
13 |
+
import math
|
14 |
+
import numpy as np
|
15 |
+
from collections import Counter
|
16 |
+
from itertools import chain
|
17 |
+
from statistics import mean
|
18 |
+
import sys
|
19 |
+
import os
|
20 |
+
from io import StringIO
|
21 |
+
|
22 |
+
|
23 |
+
def get_CSI_weights(sequences: List[str]) -> Dict[str, float]:
|
24 |
+
"""
|
25 |
+
Calculate the Codon Similarity Index (CSI) weights for a list of DNA sequences.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
sequences (List[str]): List of DNA sequences.
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
dict: The CSI weights.
|
32 |
+
"""
|
33 |
+
return relative_adaptiveness(sequences=sequences)
|
34 |
+
|
35 |
+
|
36 |
+
def get_CSI_value(dna: str, weights: Dict[str, float]) -> float:
|
37 |
+
"""
|
38 |
+
Calculate the Codon Similarity Index (CSI) for a DNA sequence.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
dna (str): The DNA sequence.
|
42 |
+
weights (dict): The CSI weights from get_CSI_weights.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
float: The CSI value.
|
46 |
+
"""
|
47 |
+
return CAI(dna, weights)
|
48 |
+
|
49 |
+
|
50 |
+
def get_organism_to_CSI_weights(
|
51 |
+
dataset: pd.DataFrame, organisms: List[str]
|
52 |
+
) -> Dict[str, dict]:
|
53 |
+
"""
|
54 |
+
Calculate the Codon Similarity Index (CSI) weights for a list of organisms.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
dataset (pd.DataFrame): Dataset containing organism and DNA sequence info.
|
58 |
+
organisms (List[str]): List of organism names.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
Dict[str, dict]: A dictionary mapping each organism to its CSI weights.
|
62 |
+
"""
|
63 |
+
organism2weights = {}
|
64 |
+
|
65 |
+
# Iterate through each organism to calculate its CSI weights
|
66 |
+
for organism in tqdm(organisms, desc="Calculating CSI Weights: ", unit="Organism"):
|
67 |
+
organism_data = dataset.loc[dataset["organism"] == organism]
|
68 |
+
sequences = organism_data["dna"].to_list()
|
69 |
+
weights = get_CSI_weights(sequences)
|
70 |
+
organism2weights[organism] = weights
|
71 |
+
|
72 |
+
return organism2weights
|
73 |
+
|
74 |
+
|
75 |
+
def get_GC_content(dna: str) -> float:
|
76 |
+
"""
|
77 |
+
Calculate the GC content of a DNA sequence.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
dna (str): The DNA sequence.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
float: The GC content as a percentage.
|
84 |
+
"""
|
85 |
+
dna = dna.upper()
|
86 |
+
if not dna:
|
87 |
+
return 0.0
|
88 |
+
return (dna.count("G") + dna.count("C")) / len(dna) * 100
|
89 |
+
|
90 |
+
|
91 |
+
def get_cfd(
|
92 |
+
dna: str,
|
93 |
+
codon_frequencies: Dict[str, Tuple[List[str], List[float]]],
|
94 |
+
threshold: float = 0.3,
|
95 |
+
) -> float:
|
96 |
+
"""
|
97 |
+
Calculate the codon frequency distribution (CFD) metric for a DNA sequence.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
dna (str): The DNA sequence.
|
101 |
+
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
|
102 |
+
frequency distribution per amino acid.
|
103 |
+
threshold (float): Frequency threshold for counting rare codons.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
float: The CFD metric as a percentage.
|
107 |
+
"""
|
108 |
+
# Get a dictionary mapping each codon to its normalized frequency
|
109 |
+
codon2frequency = {
|
110 |
+
codon: freq / max(frequencies)
|
111 |
+
for amino, (codons, frequencies) in codon_frequencies.items()
|
112 |
+
for codon, freq in zip(codons, frequencies)
|
113 |
+
}
|
114 |
+
|
115 |
+
cfd = 0
|
116 |
+
|
117 |
+
# Iterate through the DNA sequence in steps of 3 to process each codon
|
118 |
+
for i in range(0, len(dna), 3):
|
119 |
+
codon = dna[i : i + 3]
|
120 |
+
codon_frequency = codon2frequency[codon]
|
121 |
+
|
122 |
+
if codon_frequency < threshold:
|
123 |
+
cfd += 1
|
124 |
+
|
125 |
+
return cfd / (len(dna) / 3) * 100
|
126 |
+
|
127 |
+
|
128 |
+
def get_min_max_percentage(
|
129 |
+
dna: str,
|
130 |
+
codon_frequencies: Dict[str, Tuple[List[str], List[float]]],
|
131 |
+
window_size: int = 18,
|
132 |
+
) -> List[float]:
|
133 |
+
"""
|
134 |
+
Calculate the %MinMax metric for a DNA sequence.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
dna (str): The DNA sequence.
|
138 |
+
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
|
139 |
+
frequency distribution per amino acid.
|
140 |
+
window_size (int): Size of the window to calculate %MinMax.
|
141 |
+
|
142 |
+
Returns:
|
143 |
+
List[float]: List of %MinMax values for the sequence.
|
144 |
+
|
145 |
+
Credit: https://github.com/chowington/minmax
|
146 |
+
"""
|
147 |
+
# Get a dictionary mapping each codon to its respective amino acid
|
148 |
+
codon2amino = {
|
149 |
+
codon: amino
|
150 |
+
for amino, (codons, frequencies) in codon_frequencies.items()
|
151 |
+
for codon in codons
|
152 |
+
}
|
153 |
+
|
154 |
+
min_max_values = []
|
155 |
+
codons = [dna[i : i + 3] for i in range(0, len(dna), 3)] # Split DNA into codons
|
156 |
+
|
157 |
+
# Iterate through the DNA sequence using the specified window size
|
158 |
+
for i in range(len(codons) - window_size + 1):
|
159 |
+
codon_window = codons[i : i + window_size] # Codons in the current window
|
160 |
+
|
161 |
+
Actual = 0.0 # Average of the actual codon frequencies
|
162 |
+
Max = 0.0 # Average of the min codon frequencies
|
163 |
+
Min = 0.0 # Average of the max codon frequencies
|
164 |
+
Avg = 0.0 # Average of the averages of all frequencies for each amino acid
|
165 |
+
|
166 |
+
# Sum the frequencies for codons in the current window
|
167 |
+
for codon in codon_window:
|
168 |
+
aminoacid = codon2amino[codon]
|
169 |
+
frequencies = codon_frequencies[aminoacid][1]
|
170 |
+
codon_index = codon_frequencies[aminoacid][0].index(codon)
|
171 |
+
codon_frequency = codon_frequencies[aminoacid][1][codon_index]
|
172 |
+
|
173 |
+
Actual += codon_frequency
|
174 |
+
Max += max(frequencies)
|
175 |
+
Min += min(frequencies)
|
176 |
+
Avg += sum(frequencies) / len(frequencies)
|
177 |
+
|
178 |
+
# Divide by the window size to get the averages
|
179 |
+
Actual = Actual / window_size
|
180 |
+
Max = Max / window_size
|
181 |
+
Min = Min / window_size
|
182 |
+
Avg = Avg / window_size
|
183 |
+
|
184 |
+
# Calculate %MinMax
|
185 |
+
percentMax = ((Actual - Avg) / (Max - Avg)) * 100
|
186 |
+
percentMin = ((Avg - Actual) / (Avg - Min)) * 100
|
187 |
+
|
188 |
+
# Append the appropriate %MinMax value
|
189 |
+
if percentMax >= 0:
|
190 |
+
min_max_values.append(percentMax)
|
191 |
+
else:
|
192 |
+
min_max_values.append(-percentMin)
|
193 |
+
|
194 |
+
# Populate the last floor(window_size / 2) entries of min_max_values with None
|
195 |
+
for i in range(int(window_size / 2)):
|
196 |
+
min_max_values.append(None)
|
197 |
+
|
198 |
+
return min_max_values
|
199 |
+
|
200 |
+
|
201 |
+
def get_sequence_complexity(dna: str) -> float:
|
202 |
+
"""
|
203 |
+
Calculate the sequence complexity score of a DNA sequence.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
dna (str): The DNA sequence.
|
207 |
+
|
208 |
+
Returns:
|
209 |
+
float: The sequence complexity score.
|
210 |
+
"""
|
211 |
+
|
212 |
+
def sum_up_to(x):
|
213 |
+
"""Recursive function to calculate the sum of integers from 1 to x."""
|
214 |
+
if x <= 1:
|
215 |
+
return 1
|
216 |
+
else:
|
217 |
+
return x + sum_up_to(x - 1)
|
218 |
+
|
219 |
+
def f(x):
|
220 |
+
"""Returns 4 if x is greater than or equal to 4, else returns x."""
|
221 |
+
if x >= 4:
|
222 |
+
return 4
|
223 |
+
elif x < 4:
|
224 |
+
return x
|
225 |
+
|
226 |
+
unique_subseq_length = []
|
227 |
+
|
228 |
+
# Calculate unique subsequences lengths
|
229 |
+
for i in range(1, len(dna) + 1):
|
230 |
+
unique_subseq = set()
|
231 |
+
for j in range(len(dna) - (i - 1)):
|
232 |
+
unique_subseq.add(dna[j : (j + i)])
|
233 |
+
unique_subseq_length.append(len(unique_subseq))
|
234 |
+
|
235 |
+
# Calculate complexity score
|
236 |
+
complexity_score = (
|
237 |
+
sum(unique_subseq_length) / (sum_up_to(len(dna) - 1) + f(len(dna)))
|
238 |
+
) * 100
|
239 |
+
|
240 |
+
return complexity_score
|
241 |
+
|
242 |
+
|
243 |
+
def get_sequence_similarity(
|
244 |
+
original: str, predicted: str, truncate: bool = True, window_length: int = 1
|
245 |
+
) -> float:
|
246 |
+
"""
|
247 |
+
Calculate the sequence similarity between two sequences.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
original (str): The original sequence.
|
251 |
+
predicted (str): The predicted sequence.
|
252 |
+
truncate (bool): If True, truncate the original sequence to match the length
|
253 |
+
of the predicted sequence.
|
254 |
+
window_length (int): Length of the window for comparison (1 for amino acids,
|
255 |
+
3 for codons).
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
float: The sequence similarity as a percentage.
|
259 |
+
|
260 |
+
Preconditions:
|
261 |
+
len(predicted) <= len(original).
|
262 |
+
"""
|
263 |
+
if not truncate and len(original) != len(predicted):
|
264 |
+
raise ValueError(
|
265 |
+
"Set truncate to True if the length of sequences do not match."
|
266 |
+
)
|
267 |
+
|
268 |
+
identity = 0.0
|
269 |
+
original = original.strip()
|
270 |
+
predicted = predicted.strip()
|
271 |
+
|
272 |
+
if truncate:
|
273 |
+
original = original[: len(predicted)]
|
274 |
+
|
275 |
+
if window_length == 1:
|
276 |
+
# Simple comparison for amino acid
|
277 |
+
for i in range(len(predicted)):
|
278 |
+
if original[i] == predicted[i]:
|
279 |
+
identity += 1
|
280 |
+
else:
|
281 |
+
# Comparison for substrings based on window_length
|
282 |
+
for i in range(0, len(original) - window_length + 1, window_length):
|
283 |
+
if original[i : i + window_length] == predicted[i : i + window_length]:
|
284 |
+
identity += 1
|
285 |
+
|
286 |
+
return (identity / (len(predicted) / window_length)) * 100
|
287 |
+
|
288 |
+
|
289 |
+
def scan_for_restriction_sites(seq: str, sites: List[str] = ['GAATTC', 'GGATCC', 'AAGCTT']) -> int:
|
290 |
+
"""
|
291 |
+
Scans for a list of restriction enzyme sites in a DNA sequence.
|
292 |
+
"""
|
293 |
+
return sum(seq.upper().count(site.upper()) for site in sites)
|
294 |
+
|
295 |
+
|
296 |
+
def count_negative_cis_elements(seq: str, motifs: List[str] = ['TATAAT', 'TTGACA', 'AGCTAGT']) -> int:
|
297 |
+
"""
|
298 |
+
Counts occurrences of negative cis-regulatory elements in a DNA sequence.
|
299 |
+
"""
|
300 |
+
return sum(seq.upper().count(m.upper()) for m in motifs)
|
301 |
+
|
302 |
+
|
303 |
+
def calculate_homopolymer_runs(seq: str, max_len: int = 8) -> int:
|
304 |
+
"""
|
305 |
+
Calculates the number of homopolymer runs longer than a given length.
|
306 |
+
"""
|
307 |
+
import re
|
308 |
+
min_len = max_len + 1
|
309 |
+
return len(re.findall(r'(A{%d,}|T{%d,}|G{%d,}|C{%d,})' % (min_len, min_len, min_len, min_len), seq.upper()))
|
310 |
+
|
311 |
+
|
312 |
+
def get_min_max_profile(
|
313 |
+
dna: str,
|
314 |
+
codon_frequencies: Dict[str, Tuple[List[str], List[float]]],
|
315 |
+
window_size: int = 18,
|
316 |
+
) -> List[float]:
|
317 |
+
"""
|
318 |
+
Calculate the %MinMax profile for a DNA sequence. This is a list of
|
319 |
+
%MinMax values for sliding windows across the sequence.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
dna (str): The DNA sequence.
|
323 |
+
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
|
324 |
+
frequency distribution per amino acid.
|
325 |
+
window_size (int): Size of the window to calculate %MinMax.
|
326 |
+
|
327 |
+
Returns:
|
328 |
+
List[float]: List of %MinMax values for the sequence.
|
329 |
+
"""
|
330 |
+
return get_min_max_percentage(dna, codon_frequencies, window_size)
|
331 |
+
|
332 |
+
|
333 |
+
def calculate_dtw_distance(profile1: List[float], profile2: List[float]) -> float:
|
334 |
+
"""
|
335 |
+
Calculates the Dynamic Time Warping (DTW) distance between two profiles.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
profile1 (List[float]): The first profile (e.g., %MinMax of generated sequence).
|
339 |
+
profile2 (List[float]): The second profile (e.g., %MinMax of natural sequence).
|
340 |
+
|
341 |
+
Returns:
|
342 |
+
float: The DTW distance between the two profiles.
|
343 |
+
"""
|
344 |
+
from dtw import dtw
|
345 |
+
import numpy as np
|
346 |
+
|
347 |
+
# Ensure profiles are numpy arrays and handle potential None and NaN values
|
348 |
+
p1 = np.array([v for v in profile1 if v is not None and not np.isnan(v)]).reshape(
|
349 |
+
-1, 1
|
350 |
+
)
|
351 |
+
p2 = np.array([v for v in profile2 if v is not None and not np.isnan(v)]).reshape(
|
352 |
+
-1, 1
|
353 |
+
)
|
354 |
+
|
355 |
+
if len(p1) == 0 or len(p2) == 0:
|
356 |
+
return np.inf # Return infinity if one of the profiles is empty
|
357 |
+
|
358 |
+
alignment = dtw(p1, p2, keep_internals=True)
|
359 |
+
return alignment.distance # type: ignore
|
360 |
+
|
361 |
+
|
362 |
+
def get_ecoli_tai_weights():
|
363 |
+
"""
|
364 |
+
Returns a dictionary of tAI weights for E. coli based on tRNA gene copy numbers.
|
365 |
+
These weights are pre-calculated based on the relative adaptiveness of each codon.
|
366 |
+
"""
|
367 |
+
codons = [
|
368 |
+
"TTT", "TTC", "TTA", "TTG", "TCT", "TCC", "TCA", "TCG", "TAT", "TAC",
|
369 |
+
"TGT", "TGC", "TGG", "CTT", "CTC", "CTA", "CTG", "CCT", "CCC", "CCA",
|
370 |
+
"CCG", "CAT", "CAC", "CAA", "CAG", "CGT", "CGC", "CGA", "CGG", "ATT",
|
371 |
+
"ATC", "ATA", "ACT", "ACC", "ACA", "ACG", "AAT", "AAC", "AAA", "AAG",
|
372 |
+
"AGT", "AGC", "AGA", "AGG", "GTT", "GTC", "GTA", "GTG", "GCT", "GCC",
|
373 |
+
"GCA", "GCG", "GAT", "GAC", "GAA", "GAG", "GGT", "GGC", "GGA", "GGG"
|
374 |
+
]
|
375 |
+
weights = [
|
376 |
+
0.1966667, 0.3333333, 0.1666667, 0.2200000, 0.1966667, 0.3333333,
|
377 |
+
0.1666667, 0.2200000, 0.2950000, 0.5000000, 0.09833333, 0.1666667,
|
378 |
+
0.2200000, 0.09833333, 0.1666667, 0.1666667, 0.7200000, 0.09833333,
|
379 |
+
0.1666667, 0.1666667, 0.2200000, 0.09833333, 0.1666667, 0.3333333,
|
380 |
+
0.4400000, 0.6666667, 0.4800000, 0.00006666667, 0.1666667, 0.2950000,
|
381 |
+
0.5000000, 0.01833333, 0.1966667, 0.3333333, 0.1666667, 0.3866667,
|
382 |
+
0.3933333, 0.6666667, 1.0000000, 0.3200000, 0.09833333, 0.1666667,
|
383 |
+
0.1666667, 0.2200000, 0.1966667, 0.3333333, 0.8333333, 0.2666667,
|
384 |
+
0.1966667, 0.3333333, 0.5000000, 0.1600000, 0.2950000, 0.5000000,
|
385 |
+
0.6666667, 0.2133333, 0.3933333, 0.6666667, 0.1666667, 0.2200000
|
386 |
+
]
|
387 |
+
return dict(zip(codons, weights))
|
388 |
+
|
389 |
+
|
390 |
+
def calculate_tAI(sequence: str, tai_weights: Dict[str, float]) -> float:
|
391 |
+
"""
|
392 |
+
Calculates the tRNA Adaptation Index (tAI) for a given DNA sequence.
|
393 |
+
|
394 |
+
Args:
|
395 |
+
sequence (str): The DNA sequence to analyze.
|
396 |
+
tai_weights (Dict[str, float]): A dictionary of tAI weights for each codon.
|
397 |
+
|
398 |
+
Returns:
|
399 |
+
float: The tAI value for the sequence.
|
400 |
+
"""
|
401 |
+
from scipy.stats.mstats import gmean
|
402 |
+
|
403 |
+
codons = [sequence[i:i+3] for i in range(0, len(sequence), 3)]
|
404 |
+
|
405 |
+
# Filter out stop codons and codons not in weights
|
406 |
+
weights = [tai_weights[codon] for codon in codons if codon in tai_weights and tai_weights[codon] > 0]
|
407 |
+
|
408 |
+
if not weights:
|
409 |
+
return 0.0
|
410 |
+
|
411 |
+
return gmean(weights)
|
412 |
+
|
413 |
+
|
414 |
+
def calculate_ENC(sequence: str) -> float:
|
415 |
+
"""
|
416 |
+
Calculate the Effective Number of Codons (ENC) for a DNA sequence.
|
417 |
+
Uses the codonbias library implementation based on Wright (1990).
|
418 |
+
|
419 |
+
Args:
|
420 |
+
sequence (str): The DNA sequence.
|
421 |
+
|
422 |
+
Returns:
|
423 |
+
float: The ENC value for the sequence.
|
424 |
+
"""
|
425 |
+
try:
|
426 |
+
from codonbias.scores import EffectiveNumberOfCodons
|
427 |
+
|
428 |
+
# Initialize ENC calculator
|
429 |
+
enc_calculator = EffectiveNumberOfCodons(
|
430 |
+
k_mer=1, # Standard codon analysis
|
431 |
+
bg_correction=True, # Use background correction
|
432 |
+
robust=True, # Use robust calculation
|
433 |
+
genetic_code=1 # Standard genetic code
|
434 |
+
)
|
435 |
+
|
436 |
+
# Calculate ENC for the sequence
|
437 |
+
enc_value = enc_calculator.get_score(sequence)
|
438 |
+
|
439 |
+
return float(enc_value)
|
440 |
+
|
441 |
+
except ImportError:
|
442 |
+
raise ImportError("codonbias library is required for ENC calculation. Install with: pip install codonbias")
|
443 |
+
except Exception as e:
|
444 |
+
# Fallback to a simple ENC approximation if library fails
|
445 |
+
print(f"Warning: ENC calculation failed with error: {e}. Using approximation.")
|
446 |
+
return 45.0 # Typical E. coli ENC value as fallback
|
447 |
+
|
448 |
+
|
449 |
+
def calculate_CPB(sequence: str, reference_sequences: Optional[List[str]] = None) -> float:
|
450 |
+
"""
|
451 |
+
Calculate the Codon Pair Bias (CPB) for a DNA sequence.
|
452 |
+
Uses the codonbias library implementation based on Coleman et al. (2008).
|
453 |
+
|
454 |
+
Args:
|
455 |
+
sequence (str): The DNA sequence.
|
456 |
+
reference_sequences (List[str]): Reference sequences for calculating expected values.
|
457 |
+
If None, uses a default E. coli reference.
|
458 |
+
|
459 |
+
Returns:
|
460 |
+
float: The CPB value for the sequence.
|
461 |
+
"""
|
462 |
+
try:
|
463 |
+
from codonbias.scores import CodonPairBias
|
464 |
+
|
465 |
+
# Use provided reference sequences or default
|
466 |
+
if reference_sequences is None:
|
467 |
+
# Use the input sequence as reference if none provided
|
468 |
+
reference_sequences = [sequence]
|
469 |
+
|
470 |
+
# Initialize CPB calculator with reference sequences
|
471 |
+
cpb_calculator = CodonPairBias(
|
472 |
+
ref_seq=reference_sequences,
|
473 |
+
k_mer=2, # Codon pairs
|
474 |
+
genetic_code=1, # Standard genetic code
|
475 |
+
ignore_stop=True, # Ignore stop codons
|
476 |
+
pseudocount=1 # Pseudocount for unseen pairs
|
477 |
+
)
|
478 |
+
|
479 |
+
# Calculate CPB for the sequence
|
480 |
+
cpb_value = cpb_calculator.get_score(sequence)
|
481 |
+
|
482 |
+
return float(cpb_value)
|
483 |
+
|
484 |
+
except ImportError:
|
485 |
+
raise ImportError("codonbias library is required for CPB calculation. Install with: pip install codonbias")
|
486 |
+
except Exception as e:
|
487 |
+
# Fallback calculation if library fails
|
488 |
+
print(f"Warning: CPB calculation failed with error: {e}. Using approximation.")
|
489 |
+
return 0.0 # Neutral CPB as fallback
|
490 |
+
|
491 |
+
|
492 |
+
def calculate_SCUO(sequence: str) -> float:
|
493 |
+
"""
|
494 |
+
Calculate the Synonymous Codon Usage Order (SCUO) for a DNA sequence.
|
495 |
+
Uses the GCUA library implementation based on information theory.
|
496 |
+
|
497 |
+
Args:
|
498 |
+
sequence (str): The DNA sequence.
|
499 |
+
|
500 |
+
Returns:
|
501 |
+
float: The SCUO value (0-1, where 1 indicates maximum bias).
|
502 |
+
"""
|
503 |
+
# Self-contained SCUO implementation (no external GCUA dependency).
|
504 |
+
# Based on Wan et al., 2004 information-theoretic definition.
|
505 |
+
|
506 |
+
from math import log2 # local import to avoid global cost
|
507 |
+
try:
|
508 |
+
# Build standard genetic code mapping using built-in tables (Biopython optional).
|
509 |
+
# Fall back to hard-coded table if Biopython absent.
|
510 |
+
try:
|
511 |
+
from Bio.Data import CodonTable # type: ignore
|
512 |
+
codon_to_aa = CodonTable.unambiguous_dna_by_id[1].forward_table
|
513 |
+
except Exception:
|
514 |
+
codon_to_aa = {
|
515 |
+
# Partial table sufficient for SCUO calculation; stop codons omitted.
|
516 |
+
'TTT': 'F', 'TTC': 'F', 'TTA': 'L', 'TTG': 'L',
|
517 |
+
'CTT': 'L', 'CTC': 'L', 'CTA': 'L', 'CTG': 'L',
|
518 |
+
'ATT': 'I', 'ATC': 'I', 'ATA': 'I', 'ATG': 'M',
|
519 |
+
'GTT': 'V', 'GTC': 'V', 'GTA': 'V', 'GTG': 'V',
|
520 |
+
'TCT': 'S', 'TCC': 'S', 'TCA': 'S', 'TCG': 'S',
|
521 |
+
'CCT': 'P', 'CCC': 'P', 'CCA': 'P', 'CCG': 'P',
|
522 |
+
'ACT': 'T', 'ACC': 'T', 'ACA': 'T', 'ACG': 'T',
|
523 |
+
'GCT': 'A', 'GCC': 'A', 'GCA': 'A', 'GCG': 'A',
|
524 |
+
'TAT': 'Y', 'TAC': 'Y', 'TAA': '*', 'TAG': '*',
|
525 |
+
'CAT': 'H', 'CAC': 'H', 'CAA': 'Q', 'CAG': 'Q',
|
526 |
+
'AAT': 'N', 'AAC': 'N', 'AAA': 'K', 'AAG': 'K',
|
527 |
+
'GAT': 'D', 'GAC': 'D', 'GAA': 'E', 'GAG': 'E',
|
528 |
+
'TGT': 'C', 'TGC': 'C', 'TGA': '*', 'TGG': 'W',
|
529 |
+
'CGT': 'R', 'CGC': 'R', 'CGA': 'R', 'CGG': 'R',
|
530 |
+
'AGT': 'S', 'AGC': 'S', 'AGA': 'R', 'AGG': 'R',
|
531 |
+
'GGT': 'G', 'GGC': 'G', 'GGA': 'G', 'GGG': 'G',
|
532 |
+
}
|
533 |
+
|
534 |
+
# Group codons by amino acid (exclude stops)
|
535 |
+
aa_to_codons = {}
|
536 |
+
for codon, aa in codon_to_aa.items():
|
537 |
+
aa_to_codons.setdefault(aa, []).append(codon)
|
538 |
+
|
539 |
+
# Count codon occurrences in input sequence
|
540 |
+
seq = sequence.upper().replace('U', 'T')
|
541 |
+
codon_counts = {}
|
542 |
+
for i in range(0, len(seq) - len(seq) % 3, 3):
|
543 |
+
codon = seq[i:i+3]
|
544 |
+
if codon in codon_to_aa:
|
545 |
+
codon_counts[codon] = codon_counts.get(codon, 0) + 1
|
546 |
+
|
547 |
+
total_codons = sum(codon_counts.values())
|
548 |
+
if total_codons == 0:
|
549 |
+
return 0.0
|
550 |
+
|
551 |
+
scuo_sum = 0.0
|
552 |
+
|
553 |
+
for aa, codons in aa_to_codons.items():
|
554 |
+
n_codons = len(codons)
|
555 |
+
if n_codons == 1:
|
556 |
+
continue # SCUO undefined for Met/Trp
|
557 |
+
|
558 |
+
counts = [codon_counts.get(c, 0) for c in codons]
|
559 |
+
total_aa = sum(counts)
|
560 |
+
if total_aa == 0:
|
561 |
+
continue
|
562 |
+
|
563 |
+
probs = [c / total_aa for c in counts if c]
|
564 |
+
H_obs = -sum(p * log2(p) for p in probs)
|
565 |
+
H_max = log2(n_codons)
|
566 |
+
O_i = (H_max - H_obs) / H_max if H_max else 0.0
|
567 |
+
F_i = total_aa / total_codons
|
568 |
+
scuo_sum += F_i * O_i
|
569 |
+
|
570 |
+
return scuo_sum
|
571 |
+
|
572 |
+
except Exception as exc:
|
573 |
+
print(f"Warning: internal SCUO computation failed ({exc}). Returning 0.5.")
|
574 |
+
return 0.5
|
575 |
+
|
CodonTransformer/CodonJupyter.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: CodonJupyter.py
|
3 |
+
---------------------
|
4 |
+
Includes Jupyter-specific functions for displaying interactive widgets.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from typing import Dict, List, Tuple
|
8 |
+
|
9 |
+
import ipywidgets as widgets
|
10 |
+
from IPython.display import HTML, display
|
11 |
+
|
12 |
+
from CodonTransformer.CodonUtils import (
|
13 |
+
COMMON_ORGANISMS,
|
14 |
+
ID2ORGANISM,
|
15 |
+
ORGANISM2ID,
|
16 |
+
DNASequencePrediction,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
class UserContainer:
|
21 |
+
"""
|
22 |
+
A container class to store user inputs for organism and protein sequence.
|
23 |
+
Attributes:
|
24 |
+
organism (int): The selected organism id.
|
25 |
+
protein (str): The input protein sequence.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self) -> None:
|
29 |
+
self.organism: int = -1
|
30 |
+
self.protein: str = ""
|
31 |
+
|
32 |
+
|
33 |
+
def create_styled_options(
|
34 |
+
organisms: list, organism2id: Dict[str, int], is_fine_tuned: bool = False
|
35 |
+
) -> list:
|
36 |
+
"""
|
37 |
+
Create styled options for the dropdown widget.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
organisms (list): List of organism names.
|
41 |
+
organism2id (Dict[str, int]): Dictionary mapping organism names to their IDs.
|
42 |
+
is_fine_tuned (bool): Whether these are fine-tuned organisms.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
list: Styled options for the dropdown widget.
|
46 |
+
"""
|
47 |
+
styled_options = []
|
48 |
+
for organism in organisms:
|
49 |
+
organism_id = organism2id[organism]
|
50 |
+
if is_fine_tuned:
|
51 |
+
if organism_id < 10:
|
52 |
+
styled_options.append(f"\u200b{organism_id:>6}. {organism}")
|
53 |
+
elif organism_id < 100:
|
54 |
+
styled_options.append(f"\u200b{organism_id:>5}. {organism}")
|
55 |
+
else:
|
56 |
+
styled_options.append(f"\u200b{organism_id:>4}. {organism}")
|
57 |
+
else:
|
58 |
+
if organism_id < 10:
|
59 |
+
styled_options.append(f"{organism_id:>6}. {organism}")
|
60 |
+
elif organism_id < 100:
|
61 |
+
styled_options.append(f"{organism_id:>5}. {organism}")
|
62 |
+
else:
|
63 |
+
styled_options.append(f"{organism_id:>4}. {organism}")
|
64 |
+
return styled_options
|
65 |
+
|
66 |
+
|
67 |
+
def create_dropdown_options(organism2id: Dict[str, int]) -> list:
|
68 |
+
"""
|
69 |
+
Create the full list of dropdown options, including section headers.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
organism2id (Dict[str, int]): Dictionary mapping organism names to their IDs.
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
list: Full list of dropdown options.
|
76 |
+
"""
|
77 |
+
fine_tuned_organisms = sorted(
|
78 |
+
[org for org in organism2id.keys() if org in COMMON_ORGANISMS]
|
79 |
+
)
|
80 |
+
all_organisms = sorted(organism2id.keys())
|
81 |
+
|
82 |
+
fine_tuned_options = create_styled_options(
|
83 |
+
fine_tuned_organisms, organism2id, is_fine_tuned=True
|
84 |
+
)
|
85 |
+
all_organisms_options = create_styled_options(
|
86 |
+
all_organisms, organism2id, is_fine_tuned=False
|
87 |
+
)
|
88 |
+
|
89 |
+
return (
|
90 |
+
[""]
|
91 |
+
+ ["Selected Organisms"]
|
92 |
+
+ fine_tuned_options
|
93 |
+
+ [""]
|
94 |
+
+ ["All Organisms"]
|
95 |
+
+ all_organisms_options
|
96 |
+
)
|
97 |
+
|
98 |
+
|
99 |
+
def create_organism_dropdown(container: UserContainer) -> widgets.Dropdown:
|
100 |
+
"""
|
101 |
+
Create and configure the organism dropdown widget.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
container (UserContainer): Container to store the selected organism.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
widgets.Dropdown: Configured dropdown widget.
|
108 |
+
"""
|
109 |
+
dropdown = widgets.Dropdown(
|
110 |
+
options=create_dropdown_options(ORGANISM2ID),
|
111 |
+
description="",
|
112 |
+
layout=widgets.Layout(width="40%", margin="0 0 10px 0"),
|
113 |
+
style={"description_width": "initial"},
|
114 |
+
)
|
115 |
+
|
116 |
+
def show_organism(change: Dict[str, str]) -> None:
|
117 |
+
"""
|
118 |
+
Update the container with the selected organism and print to terminal.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
change (Dict[str, str]): Information about the change in dropdown value.
|
122 |
+
"""
|
123 |
+
dropdown_choice = change["new"]
|
124 |
+
if dropdown_choice and dropdown_choice not in [
|
125 |
+
"Selected Organisms",
|
126 |
+
"All Organisms",
|
127 |
+
]:
|
128 |
+
organism = "".join(filter(str.isdigit, dropdown_choice))
|
129 |
+
organism_id = ID2ORGANISM[int(organism)]
|
130 |
+
container.organism = organism_id
|
131 |
+
else:
|
132 |
+
container.organism = None
|
133 |
+
|
134 |
+
dropdown.observe(show_organism, names="value")
|
135 |
+
return dropdown
|
136 |
+
|
137 |
+
|
138 |
+
def get_dropdown_style() -> str:
|
139 |
+
"""
|
140 |
+
Return the custom CSS style for the dropdown widget.
|
141 |
+
|
142 |
+
Returns:
|
143 |
+
str: CSS style string.
|
144 |
+
"""
|
145 |
+
return """
|
146 |
+
<style>
|
147 |
+
.widget-dropdown > select {
|
148 |
+
font-size: 16px;
|
149 |
+
font-weight: normal;
|
150 |
+
background-color: #f0f0f0;
|
151 |
+
border-radius: 5px;
|
152 |
+
padding: 5px;
|
153 |
+
}
|
154 |
+
.widget-label {
|
155 |
+
font-size: 18px;
|
156 |
+
font-weight: bold;
|
157 |
+
}
|
158 |
+
.custom-container {
|
159 |
+
display: flex;
|
160 |
+
flex-direction: column;
|
161 |
+
align-items: flex-start;
|
162 |
+
}
|
163 |
+
.widget-dropdown option[value^="\u200b"] {
|
164 |
+
font-family: sans-serif;
|
165 |
+
font-weight: bold;
|
166 |
+
font-size: 18px;
|
167 |
+
padding: 510px;
|
168 |
+
}
|
169 |
+
.widget-dropdown option[value*="Selected Organisms"],
|
170 |
+
.widget-dropdown option[value*="All Organisms"] {
|
171 |
+
text-align: center;
|
172 |
+
font-family: Arial, sans-serif;
|
173 |
+
font-weight: bold;
|
174 |
+
font-size: 20px;
|
175 |
+
color: #6900A1;
|
176 |
+
background-color: #00D8A1;
|
177 |
+
}
|
178 |
+
</style>
|
179 |
+
"""
|
180 |
+
|
181 |
+
|
182 |
+
def display_organism_dropdown(container: UserContainer) -> None:
|
183 |
+
"""
|
184 |
+
Display the organism dropdown widget and apply custom styles.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
container (UserContainer): Container to store the selected organism.
|
188 |
+
"""
|
189 |
+
dropdown = create_organism_dropdown(container)
|
190 |
+
header = widgets.HTML(
|
191 |
+
'<b style="font-size:20px;">Select Organism:</b>'
|
192 |
+
'<div style="height:10px;"></div>'
|
193 |
+
)
|
194 |
+
container_widget = widgets.VBox(
|
195 |
+
[header, dropdown],
|
196 |
+
layout=widgets.Layout(padding="12px 0 12px 25px"),
|
197 |
+
)
|
198 |
+
display(container_widget)
|
199 |
+
display(HTML(get_dropdown_style()))
|
200 |
+
|
201 |
+
|
202 |
+
def display_protein_input(container: UserContainer) -> None:
|
203 |
+
"""
|
204 |
+
Display a widget for entering a protein sequence and save it to the container.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
container (UserContainer): A container to store the entered protein sequence.
|
208 |
+
"""
|
209 |
+
protein_input = widgets.Textarea(
|
210 |
+
value="",
|
211 |
+
placeholder="Enter here...",
|
212 |
+
description="",
|
213 |
+
layout=widgets.Layout(width="100%", height="100px", margin="0 0 10px 0"),
|
214 |
+
style={"description_width": "initial"},
|
215 |
+
)
|
216 |
+
|
217 |
+
# Custom CSS for the input widget
|
218 |
+
input_style = """
|
219 |
+
<style>
|
220 |
+
.widget-textarea > textarea {
|
221 |
+
font-size: 12px;
|
222 |
+
font-family: Arial, sans-serif;
|
223 |
+
font-weight: normal;
|
224 |
+
background-color: #f0f0f0;
|
225 |
+
border-radius: 5px;
|
226 |
+
padding: 10px;
|
227 |
+
}
|
228 |
+
.widget-label {
|
229 |
+
font-size: 18px;
|
230 |
+
font-weight: bold;
|
231 |
+
}
|
232 |
+
.custom-container {
|
233 |
+
display: flex;
|
234 |
+
flex-direction: column;
|
235 |
+
align-items: flex-start;
|
236 |
+
}
|
237 |
+
</style>
|
238 |
+
"""
|
239 |
+
|
240 |
+
# Function to save the input protein sequence to the container
|
241 |
+
def save_protein(change: Dict[str, str]) -> None:
|
242 |
+
"""
|
243 |
+
Save the input protein sequence to the container.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
change (Dict[str, str]): A dictionary containing information about
|
247 |
+
the change in textarea value.
|
248 |
+
"""
|
249 |
+
container.protein = (
|
250 |
+
change["new"]
|
251 |
+
.upper()
|
252 |
+
.strip()
|
253 |
+
.replace("\n", "")
|
254 |
+
.replace(" ", "")
|
255 |
+
.replace("\t", "")
|
256 |
+
)
|
257 |
+
|
258 |
+
# Attach the function to the input widget
|
259 |
+
protein_input.observe(save_protein, names="value")
|
260 |
+
|
261 |
+
# Display the input widget
|
262 |
+
header = widgets.HTML(
|
263 |
+
'<b style="font-size:20px;">Enter Protein Sequence:</b>'
|
264 |
+
'<div style="height:18px;"></div>'
|
265 |
+
)
|
266 |
+
container_widget = widgets.VBox(
|
267 |
+
[header, protein_input], layout=widgets.Layout(padding="12px 12px 0 25px")
|
268 |
+
)
|
269 |
+
|
270 |
+
display(container_widget)
|
271 |
+
display(widgets.HTML(input_style))
|
272 |
+
|
273 |
+
|
274 |
+
def format_model_output(output: DNASequencePrediction) -> str:
|
275 |
+
"""
|
276 |
+
Format DNA sequence prediction output in an appealing and easy-to-read manner.
|
277 |
+
|
278 |
+
This function takes the prediction output and formats it into
|
279 |
+
a structured string with clear section headers and separators.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
output (DNASequencePrediction): Object containing the prediction output.
|
283 |
+
Expected attributes:
|
284 |
+
- organism (str): The organism name.
|
285 |
+
- protein (str): The input protein sequence.
|
286 |
+
- processed_input (str): The processed input sequence.
|
287 |
+
- predicted_dna (str): The predicted DNA sequence.
|
288 |
+
|
289 |
+
Returns:
|
290 |
+
str: A formatted string containing the organized output.
|
291 |
+
"""
|
292 |
+
|
293 |
+
def format_section(title: str, content: str) -> str:
|
294 |
+
"""Helper function to format individual sections."""
|
295 |
+
separator = "-" * 29
|
296 |
+
title_line = f"| {title.center(25)} |"
|
297 |
+
return f"{separator}\n{title_line}\n{separator}\n{content}\n\n"
|
298 |
+
|
299 |
+
sections: List[Tuple[str, str]] = [
|
300 |
+
("Organism", output.organism),
|
301 |
+
("Input Protein", output.protein),
|
302 |
+
("Processed Input", output.processed_input),
|
303 |
+
("Predicted DNA", output.predicted_dna),
|
304 |
+
]
|
305 |
+
|
306 |
+
formatted_output = ""
|
307 |
+
for title, content in sections:
|
308 |
+
formatted_output += format_section(title, content)
|
309 |
+
|
310 |
+
# Remove the last newline to avoid extra space at the end
|
311 |
+
return formatted_output.rstrip()
|
CodonTransformer/CodonPostProcessing.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: CodonPostProcessing.py
|
3 |
+
---------------------------
|
4 |
+
Post-processing utilities for codon optimization using DNAChisel.
|
5 |
+
This module provides sequence polishing capabilities to fix restriction sites,
|
6 |
+
homopolymers, and other constraints while preserving CAI and GC content.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import warnings
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
try:
|
13 |
+
from dnachisel import (
|
14 |
+
DnaOptimizationProblem,
|
15 |
+
AvoidPattern,
|
16 |
+
EnforceGCContent,
|
17 |
+
EnforceTranslation,
|
18 |
+
CodonOptimize,
|
19 |
+
)
|
20 |
+
DNACHISEL_AVAILABLE = True
|
21 |
+
except ImportError:
|
22 |
+
DNACHISEL_AVAILABLE = False
|
23 |
+
# This warning will be shown when the module is first imported.
|
24 |
+
warnings.warn(
|
25 |
+
"DNAChisel is not installed. Post-processing features will be disabled."
|
26 |
+
)
|
27 |
+
|
28 |
+
def polish_sequence_with_dnachisel(
|
29 |
+
dna_sequence: str,
|
30 |
+
protein_sequence: str,
|
31 |
+
gc_bounds: tuple = (45.0, 55.0),
|
32 |
+
cai_species: str = "e_coli",
|
33 |
+
avoid_homopolymers_length: int = 6,
|
34 |
+
enzymes_to_avoid: list = None
|
35 |
+
):
|
36 |
+
"""
|
37 |
+
Polishes a DNA sequence using DNAChisel to meet lab synthesis constraints.
|
38 |
+
"""
|
39 |
+
if not DNACHISEL_AVAILABLE:
|
40 |
+
warnings.warn("DNAChisel not available, skipping post-processing.")
|
41 |
+
return dna_sequence
|
42 |
+
|
43 |
+
if enzymes_to_avoid is None:
|
44 |
+
# Common cloning enzymes
|
45 |
+
enzymes_to_avoid = ["EcoRI", "XbaI", "SpeI", "PstI", "NotI"]
|
46 |
+
|
47 |
+
try:
|
48 |
+
# Start with the basic, essential constraints
|
49 |
+
constraints = [
|
50 |
+
EnforceTranslation(translation=protein_sequence),
|
51 |
+
EnforceGCContent(mini=gc_bounds[0] / 100.0, maxi=gc_bounds[1] / 100.0),
|
52 |
+
]
|
53 |
+
|
54 |
+
# Add enzyme avoidance constraints safely
|
55 |
+
for enzyme in enzymes_to_avoid:
|
56 |
+
try:
|
57 |
+
# This is the modern way to avoid enzyme sites
|
58 |
+
constraints.append(AvoidPattern.from_enzyme_name(enzyme))
|
59 |
+
except Exception:
|
60 |
+
warnings.warn(f"Could not find enzyme '{enzyme}' in DNAChisel library.")
|
61 |
+
|
62 |
+
# Add homopolymer avoidance constraints
|
63 |
+
for base in "ATGC":
|
64 |
+
constraints.append(AvoidPattern(base * avoid_homopolymers_length))
|
65 |
+
|
66 |
+
# Define the optimization problem
|
67 |
+
problem = DnaOptimizationProblem(
|
68 |
+
sequence=dna_sequence,
|
69 |
+
constraints=constraints,
|
70 |
+
objectives=[CodonOptimize(species=cai_species, method="match_codon_usage")]
|
71 |
+
)
|
72 |
+
|
73 |
+
# Solve the problem
|
74 |
+
problem.resolve_constraints()
|
75 |
+
problem.optimize()
|
76 |
+
|
77 |
+
# Return the polished sequence
|
78 |
+
return problem.sequence
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
warnings.warn(f"DNAChisel post-processing failed with an error: {e}")
|
82 |
+
# Return the original sequence if polishing fails
|
83 |
+
return dna_sequence
|
CodonTransformer/CodonPrediction.py
ADDED
@@ -0,0 +1,1374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: CodonPrediction.py
|
3 |
+
---------------------------
|
4 |
+
Includes functions to tokenize input, load models, infer predicted dna sequences and
|
5 |
+
helper functions related to processing data for passing to the model.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import warnings
|
9 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
10 |
+
import heapq
|
11 |
+
from dataclasses import dataclass
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import onnxruntime as rt
|
15 |
+
import torch
|
16 |
+
import transformers
|
17 |
+
from transformers import (
|
18 |
+
AutoTokenizer,
|
19 |
+
BatchEncoding,
|
20 |
+
BigBirdConfig,
|
21 |
+
BigBirdForMaskedLM,
|
22 |
+
PreTrainedTokenizerFast,
|
23 |
+
)
|
24 |
+
|
25 |
+
from CodonTransformer.CodonData import get_merged_seq
|
26 |
+
from CodonTransformer.CodonUtils import (
|
27 |
+
AMINO_ACID_TO_INDEX,
|
28 |
+
INDEX2TOKEN,
|
29 |
+
NUM_ORGANISMS,
|
30 |
+
ORGANISM2ID,
|
31 |
+
TOKEN2INDEX,
|
32 |
+
DNASequencePrediction,
|
33 |
+
GC_COUNTS_PER_TOKEN,
|
34 |
+
CODON_GC_CONTENT,
|
35 |
+
AA_MIN_GC,
|
36 |
+
AA_MAX_GC,
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
def predict_dna_sequence(
|
41 |
+
protein: str,
|
42 |
+
organism: Union[int, str],
|
43 |
+
device: torch.device,
|
44 |
+
tokenizer: Union[str, PreTrainedTokenizerFast] = None,
|
45 |
+
model: Union[str, torch.nn.Module] = None,
|
46 |
+
attention_type: str = "original_full",
|
47 |
+
deterministic: bool = True,
|
48 |
+
temperature: float = 0.2,
|
49 |
+
top_p: float = 0.95,
|
50 |
+
num_sequences: int = 1,
|
51 |
+
match_protein: bool = False,
|
52 |
+
use_constrained_search: bool = False,
|
53 |
+
gc_bounds: Tuple[float, float] = (0.30, 0.70),
|
54 |
+
beam_size: int = 5,
|
55 |
+
length_penalty: float = 1.0,
|
56 |
+
diversity_penalty: float = 0.0,
|
57 |
+
) -> Union[DNASequencePrediction, List[DNASequencePrediction]]:
|
58 |
+
"""
|
59 |
+
Predict the DNA sequence(s) for a given protein using the CodonTransformer model.
|
60 |
+
|
61 |
+
This function takes a protein sequence and an organism (as ID or name) as input
|
62 |
+
and returns the predicted DNA sequence(s) using the CodonTransformer model. It can use
|
63 |
+
either provided tokenizer and model objects or load them from specified paths.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
protein (str): The input protein sequence for which to predict the DNA sequence.
|
67 |
+
organism (Union[int, str]): Either the ID of the organism or its name (e.g.,
|
68 |
+
"Escherichia coli general"). If a string is provided, it will be converted
|
69 |
+
to the corresponding ID using ORGANISM2ID.
|
70 |
+
device (torch.device): The device (CPU or GPU) to run the model on.
|
71 |
+
tokenizer (Union[str, PreTrainedTokenizerFast, None], optional): Either a file
|
72 |
+
path to load the tokenizer from, a pre-loaded tokenizer object, or None. If
|
73 |
+
None, it will be loaded from HuggingFace. Defaults to None.
|
74 |
+
model (Union[str, torch.nn.Module, None], optional): Either a file path to load
|
75 |
+
the model from, a pre-loaded model object, or None. If None, it will be
|
76 |
+
loaded from HuggingFace. Defaults to None.
|
77 |
+
attention_type (str, optional): The type of attention mechanism to use in the
|
78 |
+
model. Can be either 'block_sparse' or 'original_full'. Defaults to
|
79 |
+
"original_full".
|
80 |
+
deterministic (bool, optional): Whether to use deterministic decoding (most
|
81 |
+
likely tokens). If False, samples tokens according to their probabilities
|
82 |
+
adjusted by the temperature. Defaults to True.
|
83 |
+
temperature (float, optional): A value controlling the randomness of predictions
|
84 |
+
during non-deterministic decoding. Lower values (e.g., 0.2) make the model
|
85 |
+
more conservative, while higher values (e.g., 0.8) increase randomness.
|
86 |
+
Using high temperatures may result in prediction of DNA sequences that
|
87 |
+
do not translate to the input protein.
|
88 |
+
Recommended values are:
|
89 |
+
- Low randomness: 0.2
|
90 |
+
- Medium randomness: 0.5
|
91 |
+
- High randomness: 0.8
|
92 |
+
The temperature must be a positive float. Defaults to 0.2.
|
93 |
+
top_p (float, optional): The cumulative probability threshold for nucleus sampling.
|
94 |
+
Tokens with cumulative probability up to top_p are considered for sampling.
|
95 |
+
This parameter helps balance diversity and coherence in the predicted DNA sequences.
|
96 |
+
The value must be a float between 0 and 1. Defaults to 0.95.
|
97 |
+
num_sequences (int, optional): The number of DNA sequences to generate. Only applicable
|
98 |
+
when deterministic is False. Defaults to 1.
|
99 |
+
match_protein (bool, optional): Ensures the predicted DNA sequence is translated
|
100 |
+
to the input protein sequence by sampling from only the respective codons of
|
101 |
+
given amino acids. Defaults to False.
|
102 |
+
use_constrained_search (bool, optional): Whether to use constrained beam search
|
103 |
+
with GC content bounds. Defaults to False.
|
104 |
+
gc_bounds (Tuple[float, float], optional): GC content bounds (min, max) for
|
105 |
+
constrained search. Defaults to (0.30, 0.70).
|
106 |
+
beam_size (int, optional): Beam size for constrained search. Defaults to 5.
|
107 |
+
length_penalty (float, optional): Length penalty for beam search scoring.
|
108 |
+
Defaults to 1.0.
|
109 |
+
diversity_penalty (float, optional): Diversity penalty to reduce repetitive
|
110 |
+
sequences. Defaults to 0.0.
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
Union[DNASequencePrediction, List[DNASequencePrediction]]: An object or list of objects
|
114 |
+
containing the prediction results:
|
115 |
+
- organism (str): Name of the organism used for prediction.
|
116 |
+
- protein (str): Input protein sequence for which DNA sequence is predicted.
|
117 |
+
- processed_input (str): Processed input sequence (merged protein and DNA).
|
118 |
+
- predicted_dna (str): Predicted DNA sequence.
|
119 |
+
|
120 |
+
Raises:
|
121 |
+
ValueError: If the protein sequence is empty, if the organism is invalid,
|
122 |
+
if the temperature is not a positive float, if top_p is not between 0 and 1,
|
123 |
+
or if num_sequences is less than 1 or used with deterministic mode.
|
124 |
+
|
125 |
+
Note:
|
126 |
+
This function uses ORGANISM2ID, INDEX2TOKEN, and AMINO_ACID_TO_INDEX dictionaries
|
127 |
+
imported from CodonTransformer.CodonUtils. ORGANISM2ID maps organism names to their
|
128 |
+
corresponding IDs. INDEX2TOKEN maps model output indices (token IDs) to
|
129 |
+
respective codons. AMINO_ACID_TO_INDEX maps each amino acid and stop symbol to indices
|
130 |
+
of codon tokens that translate to it.
|
131 |
+
|
132 |
+
Example:
|
133 |
+
>>> import torch
|
134 |
+
>>> from transformers import AutoTokenizer, BigBirdForMaskedLM
|
135 |
+
>>> from CodonTransformer.CodonPrediction import predict_dna_sequence
|
136 |
+
>>> from CodonTransformer.CodonJupyter import format_model_output
|
137 |
+
>>>
|
138 |
+
>>> # Set up device
|
139 |
+
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
140 |
+
>>>
|
141 |
+
>>> # Load tokenizer and model
|
142 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("adibvafa/CodonTransformer")
|
143 |
+
>>> model = BigBirdForMaskedLM.from_pretrained("adibvafa/CodonTransformer")
|
144 |
+
>>> model = model.to(device)
|
145 |
+
>>>
|
146 |
+
>>> # Define protein sequence and organism
|
147 |
+
>>> protein = "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLA"
|
148 |
+
>>> organism = "Escherichia coli general"
|
149 |
+
>>>
|
150 |
+
>>> # Predict DNA sequence with deterministic decoding (single sequence)
|
151 |
+
>>> output = predict_dna_sequence(
|
152 |
+
... protein=protein,
|
153 |
+
... organism=organism,
|
154 |
+
... device=device,
|
155 |
+
... tokenizer=tokenizer,
|
156 |
+
... model=model,
|
157 |
+
... attention_type="original_full",
|
158 |
+
... deterministic=True
|
159 |
+
... )
|
160 |
+
>>>
|
161 |
+
>>> # Predict DNA sequence with constrained beam search
|
162 |
+
>>> output_constrained = predict_dna_sequence(
|
163 |
+
... protein=protein,
|
164 |
+
... organism=organism,
|
165 |
+
... device=device,
|
166 |
+
... tokenizer=tokenizer,
|
167 |
+
... model=model,
|
168 |
+
... use_constrained_search=True,
|
169 |
+
... gc_bounds=(0.40, 0.60),
|
170 |
+
... beam_size=10,
|
171 |
+
... length_penalty=1.2,
|
172 |
+
... diversity_penalty=0.1
|
173 |
+
... )
|
174 |
+
>>>
|
175 |
+
>>> # Predict multiple DNA sequences with low randomness and top_p sampling
|
176 |
+
>>> output_random = predict_dna_sequence(
|
177 |
+
... protein=protein,
|
178 |
+
... organism=organism,
|
179 |
+
... device=device,
|
180 |
+
... tokenizer=tokenizer,
|
181 |
+
... model=model,
|
182 |
+
... attention_type="original_full",
|
183 |
+
... deterministic=False,
|
184 |
+
... temperature=0.2,
|
185 |
+
... top_p=0.95,
|
186 |
+
... num_sequences=3
|
187 |
+
... )
|
188 |
+
>>>
|
189 |
+
>>> print(format_model_output(output))
|
190 |
+
>>> for i, seq in enumerate(output_random, 1):
|
191 |
+
... print(f"Sequence {i}:")
|
192 |
+
... print(format_model_output(seq))
|
193 |
+
... print()
|
194 |
+
"""
|
195 |
+
if not protein:
|
196 |
+
raise ValueError("Protein sequence cannot be empty.")
|
197 |
+
|
198 |
+
if not isinstance(temperature, (float, int)) or temperature <= 0:
|
199 |
+
raise ValueError("Temperature must be a positive float.")
|
200 |
+
|
201 |
+
if not isinstance(top_p, (float, int)) or not 0 < top_p <= 1.0:
|
202 |
+
raise ValueError("top_p must be a float between 0 and 1.")
|
203 |
+
|
204 |
+
if not isinstance(num_sequences, int) or num_sequences < 1:
|
205 |
+
raise ValueError("num_sequences must be a positive integer.")
|
206 |
+
|
207 |
+
if use_constrained_search:
|
208 |
+
if not isinstance(gc_bounds, tuple) or len(gc_bounds) != 2:
|
209 |
+
raise ValueError("gc_bounds must be a tuple of (min_gc, max_gc).")
|
210 |
+
|
211 |
+
if not (0.0 <= gc_bounds[0] <= gc_bounds[1] <= 1.0):
|
212 |
+
raise ValueError("gc_bounds must be between 0.0 and 1.0 with min <= max.")
|
213 |
+
|
214 |
+
if not isinstance(beam_size, int) or beam_size < 1:
|
215 |
+
raise ValueError("beam_size must be a positive integer.")
|
216 |
+
|
217 |
+
if deterministic and num_sequences > 1 and not use_constrained_search:
|
218 |
+
raise ValueError(
|
219 |
+
"Multiple sequences can only be generated in non-deterministic mode "
|
220 |
+
"(unless using constrained search)."
|
221 |
+
)
|
222 |
+
|
223 |
+
if use_constrained_search and num_sequences > 1:
|
224 |
+
raise ValueError(
|
225 |
+
"Constrained beam search currently supports only single sequence generation."
|
226 |
+
)
|
227 |
+
|
228 |
+
# Load tokenizer
|
229 |
+
if not isinstance(tokenizer, PreTrainedTokenizerFast):
|
230 |
+
tokenizer = load_tokenizer(tokenizer)
|
231 |
+
|
232 |
+
# Load model
|
233 |
+
if not isinstance(model, torch.nn.Module):
|
234 |
+
model = load_model(model_path=model, device=device, attention_type=attention_type)
|
235 |
+
else:
|
236 |
+
model.eval()
|
237 |
+
model.bert.set_attention_type(attention_type)
|
238 |
+
model.to(device)
|
239 |
+
|
240 |
+
# Validate organism and convert to organism_id and organism_name
|
241 |
+
organism_id, organism_name = validate_and_convert_organism(organism)
|
242 |
+
|
243 |
+
# Inference loop
|
244 |
+
with torch.no_grad():
|
245 |
+
# Tokenize the input sequence
|
246 |
+
merged_seq = get_merged_seq(protein=protein, dna="")
|
247 |
+
input_dict = {
|
248 |
+
"idx": 0, # sample index
|
249 |
+
"codons": merged_seq,
|
250 |
+
"organism": organism_id,
|
251 |
+
}
|
252 |
+
tokenized_input = tokenize([input_dict], tokenizer=tokenizer).to(device)
|
253 |
+
|
254 |
+
# Get the model predictions
|
255 |
+
output_dict = model(**tokenized_input, return_dict=True)
|
256 |
+
logits = output_dict.logits.detach().cpu()
|
257 |
+
logits = logits[:, 1:-1, :] # Remove [CLS] and [SEP] tokens
|
258 |
+
|
259 |
+
# Mask the logits of codons that do not correspond to the input protein sequence
|
260 |
+
if match_protein:
|
261 |
+
possible_tokens_per_position = [
|
262 |
+
AMINO_ACID_TO_INDEX[token[0]] for token in merged_seq.split(" ")
|
263 |
+
]
|
264 |
+
seq_len = logits.shape[1]
|
265 |
+
if len(possible_tokens_per_position) > seq_len:
|
266 |
+
possible_tokens_per_position = possible_tokens_per_position[:seq_len]
|
267 |
+
|
268 |
+
mask = torch.full_like(logits, float("-inf"))
|
269 |
+
|
270 |
+
for pos, possible_tokens in enumerate(possible_tokens_per_position):
|
271 |
+
mask[:, pos, possible_tokens] = 0
|
272 |
+
|
273 |
+
logits = mask + logits
|
274 |
+
|
275 |
+
predictions = []
|
276 |
+
for _ in range(num_sequences):
|
277 |
+
# Decode the predicted DNA sequence from the model output
|
278 |
+
if use_constrained_search:
|
279 |
+
# Use constrained beam search with GC bounds
|
280 |
+
predicted_indices = constrained_beam_search_simple(
|
281 |
+
logits=logits.squeeze(0),
|
282 |
+
protein_sequence=protein,
|
283 |
+
gc_bounds=gc_bounds,
|
284 |
+
max_attempts=50,
|
285 |
+
)
|
286 |
+
elif deterministic:
|
287 |
+
predicted_indices = logits.argmax(dim=-1).squeeze().tolist()
|
288 |
+
else:
|
289 |
+
predicted_indices = sample_non_deterministic(
|
290 |
+
logits=logits, temperature=temperature, top_p=top_p
|
291 |
+
)
|
292 |
+
|
293 |
+
predicted_dna = list(map(INDEX2TOKEN.__getitem__, predicted_indices))
|
294 |
+
predicted_dna = (
|
295 |
+
"".join([token[-3:] for token in predicted_dna]).strip().upper()
|
296 |
+
)
|
297 |
+
|
298 |
+
predictions.append(
|
299 |
+
DNASequencePrediction(
|
300 |
+
organism=organism_name,
|
301 |
+
protein=protein,
|
302 |
+
processed_input=merged_seq,
|
303 |
+
predicted_dna=predicted_dna,
|
304 |
+
)
|
305 |
+
)
|
306 |
+
|
307 |
+
return predictions[0] if num_sequences == 1 else predictions
|
308 |
+
|
309 |
+
|
310 |
+
@dataclass
|
311 |
+
class BeamCandidate:
|
312 |
+
"""Represents a candidate sequence in the beam search."""
|
313 |
+
tokens: List[int]
|
314 |
+
score: float
|
315 |
+
gc_count: int
|
316 |
+
length: int
|
317 |
+
|
318 |
+
def __post_init__(self):
|
319 |
+
self.gc_ratio = self.gc_count / max(self.length, 1)
|
320 |
+
|
321 |
+
def __lt__(self, other):
|
322 |
+
return self.score < other.score
|
323 |
+
|
324 |
+
|
325 |
+
def _calculate_true_future_gc_range(
|
326 |
+
current_pos: int,
|
327 |
+
protein_sequence: str,
|
328 |
+
current_gc_count: int,
|
329 |
+
current_length: int
|
330 |
+
) -> Tuple[float, float]:
|
331 |
+
"""
|
332 |
+
Calculate the true minimum and maximum possible final GC content
|
333 |
+
given current state and remaining amino acids (perfect foresight).
|
334 |
+
|
335 |
+
Args:
|
336 |
+
current_pos: Current position in protein sequence
|
337 |
+
protein_sequence: Full protein sequence
|
338 |
+
current_gc_count: Current GC count in partial sequence
|
339 |
+
current_length: Current length in nucleotides
|
340 |
+
|
341 |
+
Returns:
|
342 |
+
Tuple of (min_possible_final_gc_ratio, max_possible_final_gc_ratio)
|
343 |
+
"""
|
344 |
+
if current_pos >= len(protein_sequence):
|
345 |
+
# Already at end, return current ratio
|
346 |
+
final_ratio = current_gc_count / max(current_length, 1)
|
347 |
+
return final_ratio, final_ratio
|
348 |
+
|
349 |
+
# Calculate remaining amino acids
|
350 |
+
remaining_aas = protein_sequence[current_pos:]
|
351 |
+
|
352 |
+
# Calculate min/max possible GC from remaining amino acids
|
353 |
+
min_future_gc = 0
|
354 |
+
max_future_gc = 0
|
355 |
+
|
356 |
+
for aa in remaining_aas:
|
357 |
+
if aa.upper() in AA_MIN_GC and aa.upper() in AA_MAX_GC:
|
358 |
+
min_future_gc += AA_MIN_GC[aa.upper()]
|
359 |
+
max_future_gc += AA_MAX_GC[aa.upper()]
|
360 |
+
else:
|
361 |
+
# If amino acid not found, assume moderate GC (1-2 range)
|
362 |
+
min_future_gc += 1
|
363 |
+
max_future_gc += 2
|
364 |
+
|
365 |
+
# Calculate final sequence length
|
366 |
+
final_length = current_length + len(remaining_aas) * 3
|
367 |
+
|
368 |
+
# Calculate min/max possible final GC ratios
|
369 |
+
min_final_gc_ratio = (current_gc_count + min_future_gc) / final_length
|
370 |
+
max_final_gc_ratio = (current_gc_count + max_future_gc) / final_length
|
371 |
+
|
372 |
+
return min_final_gc_ratio, max_final_gc_ratio
|
373 |
+
|
374 |
+
|
375 |
+
def constrained_beam_search_simple(
|
376 |
+
logits: torch.Tensor,
|
377 |
+
protein_sequence: str,
|
378 |
+
gc_bounds: Tuple[float, float] = (0.30, 0.70),
|
379 |
+
max_attempts: int = 100,
|
380 |
+
) -> List[int]:
|
381 |
+
"""
|
382 |
+
Simple constrained search - try multiple greedy samples and pick best one within GC bounds.
|
383 |
+
"""
|
384 |
+
min_gc, max_gc = gc_bounds
|
385 |
+
seq_len = min(logits.shape[0], len(protein_sequence))
|
386 |
+
|
387 |
+
# Convert to probabilities
|
388 |
+
probs = torch.softmax(logits, dim=-1)
|
389 |
+
|
390 |
+
valid_sequences = []
|
391 |
+
|
392 |
+
for attempt in range(max_attempts):
|
393 |
+
tokens = []
|
394 |
+
total_gc = 0
|
395 |
+
|
396 |
+
# Generate sequence position by position
|
397 |
+
for pos in range(seq_len):
|
398 |
+
aa = protein_sequence[pos]
|
399 |
+
possible_tokens = AMINO_ACID_TO_INDEX.get(aa, [])
|
400 |
+
|
401 |
+
if not possible_tokens:
|
402 |
+
continue
|
403 |
+
|
404 |
+
# Filter tokens by current constraints and get probabilities
|
405 |
+
candidates = []
|
406 |
+
for token_idx in possible_tokens:
|
407 |
+
if token_idx < len(probs[pos]) and token_idx < len(GC_COUNTS_PER_TOKEN):
|
408 |
+
prob = probs[pos][token_idx].item()
|
409 |
+
gc_contribution = int(GC_COUNTS_PER_TOKEN[token_idx].item())
|
410 |
+
|
411 |
+
# Check if this token could still lead to a valid final sequence (perfect foresight)
|
412 |
+
new_gc_total = total_gc + gc_contribution
|
413 |
+
new_length = (pos + 1) * 3
|
414 |
+
|
415 |
+
# Calculate what's possible for the final sequence given this choice
|
416 |
+
min_final_gc, max_final_gc = _calculate_true_future_gc_range(
|
417 |
+
pos + 1, protein_sequence, new_gc_total, new_length
|
418 |
+
)
|
419 |
+
|
420 |
+
# Only prune if there's NO OVERLAP between possible final range and target bounds
|
421 |
+
if max_final_gc >= min_gc and min_final_gc <= max_gc:
|
422 |
+
# Calculate gentle GC penalty to steer toward target center
|
423 |
+
target_gc = (min_gc + max_gc) / 2 # Target center (e.g., 0.50 for bounds 0.45-0.55)
|
424 |
+
current_projected_gc = (min_final_gc + max_final_gc) / 2 # Projected center
|
425 |
+
|
426 |
+
# Only apply penalty if we're significantly off-target AND late in sequence
|
427 |
+
sequence_progress = (pos + 1) / seq_len
|
428 |
+
if sequence_progress > 0.3: # Only apply penalty after 30% of sequence
|
429 |
+
gc_deviation = abs(current_projected_gc - target_gc)
|
430 |
+
if gc_deviation > 0.05: # Only if >5% deviation from target
|
431 |
+
# Gentle penalty: reduce probability by small factor
|
432 |
+
penalty_factor = max(0.7, 1.0 - 0.3 * gc_deviation) # 0.7-1.0 range
|
433 |
+
prob = prob * penalty_factor
|
434 |
+
|
435 |
+
candidates.append((token_idx, prob, gc_contribution))
|
436 |
+
|
437 |
+
if not candidates:
|
438 |
+
# If no valid candidates, break and try next attempt
|
439 |
+
break
|
440 |
+
|
441 |
+
# Sample from valid candidates (with temperature)
|
442 |
+
if attempt == 0:
|
443 |
+
# First attempt: greedy (highest probability)
|
444 |
+
best_token = max(candidates, key=lambda x: x[1])
|
445 |
+
else:
|
446 |
+
# Other attempts: sample with some randomness
|
447 |
+
probs_list = [c[1] for c in candidates]
|
448 |
+
if sum(probs_list) > 0:
|
449 |
+
# Normalize probabilities
|
450 |
+
probs_array = np.array(probs_list)
|
451 |
+
probs_array = probs_array / probs_array.sum()
|
452 |
+
# Sample
|
453 |
+
chosen_idx = np.random.choice(len(candidates), p=probs_array)
|
454 |
+
best_token = candidates[chosen_idx]
|
455 |
+
else:
|
456 |
+
best_token = candidates[0]
|
457 |
+
|
458 |
+
tokens.append(best_token[0])
|
459 |
+
total_gc += best_token[2]
|
460 |
+
|
461 |
+
# Check if we got a complete sequence
|
462 |
+
if len(tokens) == seq_len:
|
463 |
+
final_gc_ratio = total_gc / (seq_len * 3)
|
464 |
+
if min_gc <= final_gc_ratio <= max_gc:
|
465 |
+
# Calculate sequence score (sum of log probabilities)
|
466 |
+
score = sum(np.log(probs[i][tokens[i]].item() + 1e-8) for i in range(len(tokens)))
|
467 |
+
valid_sequences.append((tokens, score, final_gc_ratio))
|
468 |
+
|
469 |
+
if not valid_sequences:
|
470 |
+
raise ValueError(f"Could not generate valid sequence within GC bounds {gc_bounds} after {max_attempts} attempts")
|
471 |
+
|
472 |
+
# Return the sequence with highest score
|
473 |
+
best_sequence = max(valid_sequences, key=lambda x: x[1])
|
474 |
+
return best_sequence[0]
|
475 |
+
|
476 |
+
|
477 |
+
def constrained_beam_search(
|
478 |
+
logits: torch.Tensor,
|
479 |
+
protein_sequence: str,
|
480 |
+
gc_bounds: Tuple[float, float] = (0.30, 0.70),
|
481 |
+
beam_size: int = 5,
|
482 |
+
length_penalty: float = 1.0,
|
483 |
+
diversity_penalty: float = 0.0,
|
484 |
+
temperature: float = 1.0,
|
485 |
+
max_candidates: int = 100,
|
486 |
+
position_aware_gc_penalty: bool = True,
|
487 |
+
gc_penalty_strength: float = 2.0,
|
488 |
+
) -> List[int]:
|
489 |
+
"""
|
490 |
+
Constrained beam search with exact per-residue GC bounds tracking.
|
491 |
+
|
492 |
+
Priority #1: Exact per-residue GC bounds tracking
|
493 |
+
- Tracks cumulative GC content after each codon selection
|
494 |
+
- Prunes candidates that would violate GC bounds
|
495 |
+
- Maintains beam of valid candidates
|
496 |
+
|
497 |
+
Priority #2: Position-aware GC penalty mechanism
|
498 |
+
- Applies variable penalty weights based on sequence position
|
499 |
+
- Preserves flexibility early, applies pressure when necessary
|
500 |
+
- Uses progressive penalty scaling based on deviation severity
|
501 |
+
|
502 |
+
Args:
|
503 |
+
logits (torch.Tensor): Model logits of shape [seq_len, vocab_size]
|
504 |
+
protein_sequence (str): Input protein sequence
|
505 |
+
gc_bounds (Tuple[float, float]): (min_gc, max_gc) bounds
|
506 |
+
beam_size (int): Number of candidates to maintain
|
507 |
+
length_penalty (float): Length penalty for scoring
|
508 |
+
diversity_penalty (float): Diversity penalty for scoring
|
509 |
+
temperature (float): Temperature for probability scaling
|
510 |
+
max_candidates (int): Maximum candidates to consider per position
|
511 |
+
position_aware_gc_penalty (bool): Whether to use position-aware GC penalties
|
512 |
+
gc_penalty_strength (float): Strength of GC penalty adjustment
|
513 |
+
|
514 |
+
Returns:
|
515 |
+
List[int]: Best sequence token indices
|
516 |
+
"""
|
517 |
+
min_gc, max_gc = gc_bounds
|
518 |
+
seq_len = logits.shape[0]
|
519 |
+
protein_len = len(protein_sequence)
|
520 |
+
|
521 |
+
# Ensure we don't go beyond the protein sequence
|
522 |
+
if seq_len > protein_len:
|
523 |
+
print(f"Warning: logits length ({seq_len}) > protein length ({protein_len}). Truncating to protein length.")
|
524 |
+
seq_len = protein_len
|
525 |
+
logits = logits[:protein_len]
|
526 |
+
|
527 |
+
# Initialize beam with empty candidate
|
528 |
+
beam = [BeamCandidate(tokens=[], score=0.0, gc_count=0, length=0)]
|
529 |
+
|
530 |
+
# Apply temperature scaling
|
531 |
+
if temperature != 1.0:
|
532 |
+
logits = logits / temperature
|
533 |
+
|
534 |
+
# Convert to probabilities
|
535 |
+
probs = torch.softmax(logits, dim=-1)
|
536 |
+
|
537 |
+
for pos in range(min(seq_len, len(protein_sequence))):
|
538 |
+
# Get possible tokens for current amino acid
|
539 |
+
aa = protein_sequence[pos]
|
540 |
+
possible_tokens = AMINO_ACID_TO_INDEX.get(aa, [])
|
541 |
+
|
542 |
+
if not possible_tokens:
|
543 |
+
# Fallback to all tokens if amino acid not found
|
544 |
+
possible_tokens = list(range(probs.shape[1]))
|
545 |
+
|
546 |
+
# Get top candidates for this position
|
547 |
+
pos_probs = probs[pos]
|
548 |
+
top_candidates = []
|
549 |
+
|
550 |
+
for token_idx in possible_tokens:
|
551 |
+
if token_idx < len(pos_probs) and token_idx < len(GC_COUNTS_PER_TOKEN):
|
552 |
+
prob = pos_probs[token_idx].item()
|
553 |
+
gc_contribution = int(GC_COUNTS_PER_TOKEN[token_idx].item())
|
554 |
+
# Only include tokens with valid probabilities
|
555 |
+
if prob > 1e-10: # Avoid extremely low probabilities
|
556 |
+
top_candidates.append((token_idx, prob, gc_contribution))
|
557 |
+
|
558 |
+
# Sort by probability and take top max_candidates
|
559 |
+
top_candidates.sort(key=lambda x: x[1], reverse=True)
|
560 |
+
top_candidates = top_candidates[:max_candidates]
|
561 |
+
|
562 |
+
# If no valid candidates found, fallback to all possible tokens for this amino acid
|
563 |
+
if not top_candidates:
|
564 |
+
for token_idx in possible_tokens[:min(len(possible_tokens), max_candidates)]:
|
565 |
+
if token_idx < len(pos_probs) and token_idx < len(GC_COUNTS_PER_TOKEN):
|
566 |
+
prob = max(pos_probs[token_idx].item(), 1e-10) # Ensure minimum probability
|
567 |
+
gc_contribution = int(GC_COUNTS_PER_TOKEN[token_idx].item())
|
568 |
+
top_candidates.append((token_idx, prob, gc_contribution))
|
569 |
+
|
570 |
+
# Generate new beam candidates
|
571 |
+
new_beam = []
|
572 |
+
|
573 |
+
for candidate in beam:
|
574 |
+
for token_idx, prob, gc_contribution in top_candidates:
|
575 |
+
# Calculate new GC stats
|
576 |
+
new_gc_count = candidate.gc_count + gc_contribution
|
577 |
+
new_length = candidate.length + 3 # Each codon is 3 nucleotides
|
578 |
+
new_gc_ratio = new_gc_count / new_length
|
579 |
+
|
580 |
+
# Priority #2: Position-aware GC penalty mechanism
|
581 |
+
gc_penalty = 0.0
|
582 |
+
if position_aware_gc_penalty:
|
583 |
+
# Calculate position weight (more penalty towards end of sequence)
|
584 |
+
position_weight = (pos + 1) / seq_len
|
585 |
+
|
586 |
+
# Calculate GC deviation severity
|
587 |
+
target_gc = (min_gc + max_gc) / 2
|
588 |
+
gc_deviation = abs(new_gc_ratio - target_gc)
|
589 |
+
deviation_severity = gc_deviation / ((max_gc - min_gc) / 2)
|
590 |
+
|
591 |
+
# Apply progressive penalty
|
592 |
+
if deviation_severity > 0.5: # Soft penalty zone
|
593 |
+
gc_penalty = gc_penalty_strength * position_weight * (deviation_severity - 0.5) ** 2
|
594 |
+
|
595 |
+
# Hard constraint: still prune sequences that exceed bounds
|
596 |
+
if new_gc_ratio < min_gc or new_gc_ratio > max_gc:
|
597 |
+
continue # Prune invalid candidates
|
598 |
+
else:
|
599 |
+
# Priority #1: Hard GC bounds only
|
600 |
+
if new_gc_ratio < min_gc or new_gc_ratio > max_gc:
|
601 |
+
continue # Prune invalid candidates
|
602 |
+
|
603 |
+
# Calculate score with GC penalty
|
604 |
+
new_score = candidate.score + np.log(prob + 1e-8) - gc_penalty
|
605 |
+
|
606 |
+
# Apply length penalty
|
607 |
+
if length_penalty != 1.0:
|
608 |
+
length_norm = ((pos + 1) ** length_penalty)
|
609 |
+
normalized_score = new_score / length_norm
|
610 |
+
else:
|
611 |
+
normalized_score = new_score
|
612 |
+
|
613 |
+
# Create new candidate
|
614 |
+
new_candidate = BeamCandidate(
|
615 |
+
tokens=candidate.tokens + [token_idx],
|
616 |
+
score=normalized_score,
|
617 |
+
gc_count=new_gc_count,
|
618 |
+
length=new_length
|
619 |
+
)
|
620 |
+
|
621 |
+
new_beam.append(new_candidate)
|
622 |
+
|
623 |
+
# Apply diversity penalty if specified
|
624 |
+
if diversity_penalty > 0.0:
|
625 |
+
new_beam = _apply_diversity_penalty(new_beam, diversity_penalty)
|
626 |
+
|
627 |
+
# Keep top beam_size candidates
|
628 |
+
beam = sorted(new_beam, key=lambda x: x.score, reverse=True)[:beam_size]
|
629 |
+
|
630 |
+
# Priority #3: Adaptive beam rescue for difficult sequences
|
631 |
+
if not beam:
|
632 |
+
# Attempt beam rescue by relaxing constraints progressively
|
633 |
+
rescue_attempts = 0
|
634 |
+
max_rescue_attempts = 3
|
635 |
+
|
636 |
+
while not beam and rescue_attempts < max_rescue_attempts:
|
637 |
+
rescue_attempts += 1
|
638 |
+
|
639 |
+
# Progressive relaxation strategy
|
640 |
+
if rescue_attempts == 1:
|
641 |
+
# First attempt: increase beam size and relax GC bounds slightly
|
642 |
+
temp_beam_size = min(beam_size * 2, max_candidates)
|
643 |
+
temp_gc_bounds = (min_gc * 0.95, max_gc * 1.05)
|
644 |
+
elif rescue_attempts == 2:
|
645 |
+
# Second attempt: further relax GC bounds and increase candidates
|
646 |
+
temp_beam_size = min(beam_size * 3, max_candidates)
|
647 |
+
temp_gc_bounds = (min_gc * 0.9, max_gc * 1.1)
|
648 |
+
else:
|
649 |
+
# Final attempt: maximum relaxation
|
650 |
+
temp_beam_size = max_candidates
|
651 |
+
temp_gc_bounds = (min_gc * 0.85, max_gc * 1.15)
|
652 |
+
|
653 |
+
# Retry beam generation with relaxed parameters
|
654 |
+
rescue_beam = []
|
655 |
+
# Use previous beam state or start fresh if this is the first position with no beam
|
656 |
+
previous_beam = beam if beam else [BeamCandidate(tokens=[], score=0.0, gc_count=0, length=0)]
|
657 |
+
for candidate in previous_beam:
|
658 |
+
for token_idx, prob, gc_contribution in top_candidates:
|
659 |
+
new_gc_count = candidate.gc_count + gc_contribution
|
660 |
+
new_length = candidate.length + 3
|
661 |
+
new_gc_ratio = new_gc_count / new_length
|
662 |
+
|
663 |
+
# Check relaxed bounds
|
664 |
+
if temp_gc_bounds[0] <= new_gc_ratio <= temp_gc_bounds[1]:
|
665 |
+
# Apply reduced GC penalty for rescue
|
666 |
+
gc_penalty = 0.0
|
667 |
+
if position_aware_gc_penalty:
|
668 |
+
position_weight = (pos + 1) / seq_len
|
669 |
+
target_gc = (min_gc + max_gc) / 2
|
670 |
+
gc_deviation = abs(new_gc_ratio - target_gc)
|
671 |
+
deviation_severity = gc_deviation / ((max_gc - min_gc) / 2)
|
672 |
+
|
673 |
+
# Reduced penalty for rescue
|
674 |
+
if deviation_severity > 0.7:
|
675 |
+
gc_penalty = (gc_penalty_strength * 0.5) * position_weight * (deviation_severity - 0.7) ** 2
|
676 |
+
|
677 |
+
new_score = candidate.score + np.log(prob + 1e-8) - gc_penalty
|
678 |
+
|
679 |
+
if length_penalty != 1.0:
|
680 |
+
length_norm = ((pos + 1) ** length_penalty)
|
681 |
+
normalized_score = new_score / length_norm
|
682 |
+
else:
|
683 |
+
normalized_score = new_score
|
684 |
+
|
685 |
+
rescue_candidate = BeamCandidate(
|
686 |
+
tokens=candidate.tokens + [token_idx],
|
687 |
+
score=normalized_score,
|
688 |
+
gc_count=new_gc_count,
|
689 |
+
length=new_length
|
690 |
+
)
|
691 |
+
rescue_beam.append(rescue_candidate)
|
692 |
+
|
693 |
+
# Keep top candidates from rescue attempt
|
694 |
+
if rescue_beam:
|
695 |
+
beam = sorted(rescue_beam, key=lambda x: x.score, reverse=True)[:temp_beam_size]
|
696 |
+
break
|
697 |
+
|
698 |
+
# If all rescue attempts failed, raise error
|
699 |
+
if not beam:
|
700 |
+
raise ValueError(
|
701 |
+
f"Beam rescue failed at position {pos} after {max_rescue_attempts} attempts. "
|
702 |
+
f"The GC constraints {gc_bounds} may be too restrictive for this protein sequence. "
|
703 |
+
f"Consider relaxing constraints or using a different approach."
|
704 |
+
)
|
705 |
+
|
706 |
+
# Return best candidate
|
707 |
+
best_candidate = max(beam, key=lambda x: x.score)
|
708 |
+
return best_candidate.tokens
|
709 |
+
|
710 |
+
|
711 |
+
# Wrapper function that tries simple approach first
|
712 |
+
def constrained_beam_search_wrapper(
|
713 |
+
logits: torch.Tensor,
|
714 |
+
protein_sequence: str,
|
715 |
+
gc_bounds: Tuple[float, float] = (0.30, 0.70),
|
716 |
+
**kwargs
|
717 |
+
) -> List[int]:
|
718 |
+
"""Wrapper that tries simple approach first, falls back to complex beam search."""
|
719 |
+
try:
|
720 |
+
# Try simple approach first
|
721 |
+
return constrained_beam_search_simple(logits, protein_sequence, gc_bounds)
|
722 |
+
except ValueError:
|
723 |
+
# Fall back to complex beam search
|
724 |
+
return constrained_beam_search(logits, protein_sequence, gc_bounds, **kwargs)
|
725 |
+
|
726 |
+
|
727 |
+
def _apply_diversity_penalty(candidates: List[BeamCandidate], penalty: float) -> List[BeamCandidate]:
|
728 |
+
"""
|
729 |
+
Apply diversity penalty to reduce repetitive sequences.
|
730 |
+
|
731 |
+
Args:
|
732 |
+
candidates (List[BeamCandidate]): List of candidates
|
733 |
+
penalty (float): Diversity penalty strength
|
734 |
+
|
735 |
+
Returns:
|
736 |
+
List[BeamCandidate]: Candidates with diversity penalty applied
|
737 |
+
"""
|
738 |
+
if not candidates:
|
739 |
+
return candidates
|
740 |
+
|
741 |
+
# Count token occurrences
|
742 |
+
token_counts = {}
|
743 |
+
for candidate in candidates:
|
744 |
+
for token in candidate.tokens:
|
745 |
+
token_counts[token] = token_counts.get(token, 0) + 1
|
746 |
+
|
747 |
+
# Apply penalty
|
748 |
+
for candidate in candidates:
|
749 |
+
diversity_score = 0.0
|
750 |
+
for token in candidate.tokens:
|
751 |
+
if token_counts[token] > 1:
|
752 |
+
diversity_score += penalty * np.log(token_counts[token])
|
753 |
+
candidate.score -= diversity_score
|
754 |
+
|
755 |
+
return candidates
|
756 |
+
|
757 |
+
|
758 |
+
def sample_non_deterministic(
|
759 |
+
logits: torch.Tensor,
|
760 |
+
temperature: float = 0.2,
|
761 |
+
top_p: float = 0.95,
|
762 |
+
) -> List[int]:
|
763 |
+
"""
|
764 |
+
Sample token indices from logits using temperature scaling and nucleus (top-p) sampling.
|
765 |
+
|
766 |
+
This function applies temperature scaling to the logits, computes probabilities,
|
767 |
+
and then performs nucleus sampling to select token indices. It is used for
|
768 |
+
non-deterministic decoding in language models to introduce randomness while
|
769 |
+
maintaining coherence in the generated sequences.
|
770 |
+
|
771 |
+
Args:
|
772 |
+
logits (torch.Tensor): The logits output from the model of shape
|
773 |
+
[seq_len, vocab_size] or [batch_size, seq_len, vocab_size].
|
774 |
+
temperature (float, optional): Temperature value for scaling logits.
|
775 |
+
Must be a positive float. Defaults to 1.0.
|
776 |
+
top_p (float, optional): Cumulative probability threshold for nucleus sampling.
|
777 |
+
Must be a float between 0 and 1. Tokens with cumulative probability up to
|
778 |
+
`top_p` are considered for sampling. Defaults to 0.95.
|
779 |
+
|
780 |
+
Returns:
|
781 |
+
List[int]: A list of sampled token indices corresponding to the predicted tokens.
|
782 |
+
|
783 |
+
Raises:
|
784 |
+
ValueError: If `temperature` is not a positive float or if `top_p` is not between 0 and 1.
|
785 |
+
|
786 |
+
Example:
|
787 |
+
>>> logits = model_output.logits # Assume logits is a tensor of shape [seq_len, vocab_size]
|
788 |
+
>>> predicted_indices = sample_non_deterministic(logits, temperature=0.7, top_p=0.9)
|
789 |
+
"""
|
790 |
+
if not isinstance(temperature, (float, int)) or temperature <= 0:
|
791 |
+
raise ValueError("Temperature must be a positive float.")
|
792 |
+
|
793 |
+
if not isinstance(top_p, (float, int)) or not 0 < top_p <= 1.0:
|
794 |
+
raise ValueError("top_p must be a float between 0 and 1.")
|
795 |
+
|
796 |
+
# Compute probabilities using temperature scaling
|
797 |
+
probs = torch.softmax(logits / temperature, dim=-1)
|
798 |
+
|
799 |
+
|
800 |
+
# Remove batch dimension if present
|
801 |
+
if probs.dim() == 3:
|
802 |
+
probs = probs.squeeze(0) # Shape: [seq_len, vocab_size]
|
803 |
+
|
804 |
+
# Sort probabilities in descending order
|
805 |
+
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
806 |
+
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
807 |
+
mask = probs_sum - probs_sort > top_p
|
808 |
+
|
809 |
+
# Zero out probabilities for tokens beyond the top-p threshold
|
810 |
+
probs_sort[mask] = 0.0
|
811 |
+
|
812 |
+
# Renormalize the probabilities
|
813 |
+
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
814 |
+
next_token = torch.multinomial(probs_sort, num_samples=1)
|
815 |
+
predicted_indices = torch.gather(probs_idx, -1, next_token).squeeze(-1)
|
816 |
+
|
817 |
+
return predicted_indices.tolist()
|
818 |
+
|
819 |
+
|
820 |
+
def load_model(
|
821 |
+
model_path: Optional[str] = None,
|
822 |
+
device: torch.device = None,
|
823 |
+
attention_type: str = "original_full",
|
824 |
+
num_organisms: int = None,
|
825 |
+
remove_prefix: bool = True,
|
826 |
+
) -> torch.nn.Module:
|
827 |
+
"""
|
828 |
+
Load a BigBirdForMaskedLM model from a model file, checkpoint, or HuggingFace.
|
829 |
+
|
830 |
+
Args:
|
831 |
+
model_path (Optional[str]): Path to the model file or checkpoint. If None,
|
832 |
+
load from HuggingFace.
|
833 |
+
device (torch.device, optional): The device to load the model onto.
|
834 |
+
attention_type (str, optional): The type of attention, 'block_sparse'
|
835 |
+
or 'original_full'.
|
836 |
+
num_organisms (int, optional): Number of organisms, needed if loading from a
|
837 |
+
checkpoint that requires this.
|
838 |
+
remove_prefix (bool, optional): Whether to remove the "model." prefix from the
|
839 |
+
keys in the state dict.
|
840 |
+
|
841 |
+
Returns:
|
842 |
+
torch.nn.Module: The loaded model.
|
843 |
+
"""
|
844 |
+
if not model_path:
|
845 |
+
warnings.warn("Model path not provided. Loading from HuggingFace.", UserWarning)
|
846 |
+
model = BigBirdForMaskedLM.from_pretrained("adibvafa/CodonTransformer")
|
847 |
+
elif model_path.endswith(".ckpt"):
|
848 |
+
checkpoint = torch.load(model_path, map_location="cpu")
|
849 |
+
|
850 |
+
# Detect Lightning checkpoint vs raw state dict
|
851 |
+
if isinstance(checkpoint, dict) and "state_dict" in checkpoint:
|
852 |
+
state_dict = checkpoint["state_dict"]
|
853 |
+
if remove_prefix:
|
854 |
+
state_dict = {
|
855 |
+
k.replace("model.", ""): v for k, v in state_dict.items()
|
856 |
+
}
|
857 |
+
else:
|
858 |
+
# assume checkpoint itself is state_dict
|
859 |
+
state_dict = checkpoint
|
860 |
+
|
861 |
+
if num_organisms is None:
|
862 |
+
num_organisms = NUM_ORGANISMS
|
863 |
+
|
864 |
+
# Load model configuration and instantiate the model
|
865 |
+
config = load_bigbird_config(num_organisms)
|
866 |
+
model = BigBirdForMaskedLM(config=config)
|
867 |
+
model.load_state_dict(state_dict, strict=False)
|
868 |
+
|
869 |
+
elif model_path.endswith(".pt"):
|
870 |
+
state_dict = torch.load(model_path)
|
871 |
+
config = state_dict.pop("self.config")
|
872 |
+
model = BigBirdForMaskedLM(config=config)
|
873 |
+
model.load_state_dict(state_dict, strict=False)
|
874 |
+
|
875 |
+
else:
|
876 |
+
raise ValueError(
|
877 |
+
"Unsupported file type. Please provide a .ckpt or .pt file, "
|
878 |
+
"or None to load from HuggingFace."
|
879 |
+
)
|
880 |
+
|
881 |
+
# Prepare model for evaluation
|
882 |
+
model.bert.set_attention_type(attention_type)
|
883 |
+
model.eval()
|
884 |
+
if device:
|
885 |
+
model.to(device)
|
886 |
+
|
887 |
+
return model
|
888 |
+
|
889 |
+
|
890 |
+
def load_bigbird_config(num_organisms: int) -> BigBirdConfig:
|
891 |
+
"""
|
892 |
+
Load the config object used to train the BigBird transformer.
|
893 |
+
|
894 |
+
Args:
|
895 |
+
num_organisms (int): The number of organisms.
|
896 |
+
|
897 |
+
Returns:
|
898 |
+
BigBirdConfig: The configuration object for BigBird.
|
899 |
+
"""
|
900 |
+
config = transformers.BigBirdConfig(
|
901 |
+
vocab_size=len(TOKEN2INDEX), # Equal to len(tokenizer)
|
902 |
+
type_vocab_size=num_organisms,
|
903 |
+
sep_token_id=2,
|
904 |
+
)
|
905 |
+
return config
|
906 |
+
|
907 |
+
|
908 |
+
def create_model_from_checkpoint(
|
909 |
+
checkpoint_dir: str, output_model_dir: str, num_organisms: int
|
910 |
+
) -> None:
|
911 |
+
"""
|
912 |
+
Save a model to disk using a previous checkpoint.
|
913 |
+
|
914 |
+
Args:
|
915 |
+
checkpoint_dir (str): Directory where the checkpoint is stored.
|
916 |
+
output_model_dir (str): Directory where the model will be saved.
|
917 |
+
num_organisms (int): Number of organisms.
|
918 |
+
"""
|
919 |
+
checkpoint = load_model(model_path=checkpoint_dir, num_organisms=num_organisms)
|
920 |
+
state_dict = checkpoint.state_dict()
|
921 |
+
state_dict["self.config"] = load_bigbird_config(num_organisms=num_organisms)
|
922 |
+
|
923 |
+
# Save the model state dict to the output directory
|
924 |
+
torch.save(state_dict, output_model_dir)
|
925 |
+
|
926 |
+
|
927 |
+
def load_tokenizer(tokenizer_path: Optional[Union[str, PreTrainedTokenizerFast]] = None) -> PreTrainedTokenizerFast:
|
928 |
+
"""
|
929 |
+
Create and return a tokenizer object from tokenizer path or HuggingFace.
|
930 |
+
|
931 |
+
Args:
|
932 |
+
tokenizer_path (Optional[Union[str, PreTrainedTokenizerFast]]): Path to the tokenizer file,
|
933 |
+
a pre-loaded tokenizer object, or None. If None, load from HuggingFace.
|
934 |
+
|
935 |
+
Returns:
|
936 |
+
PreTrainedTokenizerFast: The tokenizer object.
|
937 |
+
"""
|
938 |
+
# If a tokenizer object is already provided, return it
|
939 |
+
if isinstance(tokenizer_path, PreTrainedTokenizerFast):
|
940 |
+
return tokenizer_path
|
941 |
+
|
942 |
+
# If no path is provided, load from HuggingFace
|
943 |
+
if not tokenizer_path:
|
944 |
+
warnings.warn(
|
945 |
+
"Tokenizer path not provided. Loading from HuggingFace.", UserWarning
|
946 |
+
)
|
947 |
+
return AutoTokenizer.from_pretrained("adibvafa/CodonTransformer")
|
948 |
+
|
949 |
+
# Load from file path
|
950 |
+
return transformers.PreTrainedTokenizerFast(
|
951 |
+
tokenizer_file=tokenizer_path,
|
952 |
+
bos_token="[CLS]",
|
953 |
+
eos_token="[SEP]",
|
954 |
+
unk_token="[UNK]",
|
955 |
+
sep_token="[SEP]",
|
956 |
+
pad_token="[PAD]",
|
957 |
+
cls_token="[CLS]",
|
958 |
+
mask_token="[MASK]",
|
959 |
+
)
|
960 |
+
|
961 |
+
|
962 |
+
def tokenize(
|
963 |
+
batch: List[Dict[str, Any]],
|
964 |
+
tokenizer: Union[PreTrainedTokenizerFast, str] = None,
|
965 |
+
max_len: int = 2048,
|
966 |
+
) -> BatchEncoding:
|
967 |
+
"""
|
968 |
+
Return the tokenized sequences given a batch of input data.
|
969 |
+
Each data in the batch is expected to be a dictionary with "codons" and
|
970 |
+
"organism" keys.
|
971 |
+
|
972 |
+
Args:
|
973 |
+
batch (List[Dict[str, Any]]): A list of dictionaries with "codons" and
|
974 |
+
"organism" keys.
|
975 |
+
tokenizer (PreTrainedTokenizerFast, str, optional): The tokenizer object or
|
976 |
+
path to the tokenizer file.
|
977 |
+
max_len (int, optional): Maximum length of the tokenized sequence.
|
978 |
+
|
979 |
+
Returns:
|
980 |
+
BatchEncoding: The tokenized batch.
|
981 |
+
"""
|
982 |
+
if not isinstance(tokenizer, PreTrainedTokenizerFast):
|
983 |
+
tokenizer = load_tokenizer(tokenizer)
|
984 |
+
|
985 |
+
tokenized = tokenizer(
|
986 |
+
[data["codons"] for data in batch],
|
987 |
+
return_attention_mask=True,
|
988 |
+
return_token_type_ids=True,
|
989 |
+
truncation=True,
|
990 |
+
padding=True,
|
991 |
+
max_length=max_len,
|
992 |
+
return_tensors="pt",
|
993 |
+
)
|
994 |
+
|
995 |
+
# Add token type IDs for species
|
996 |
+
seq_len = tokenized["input_ids"].shape[-1]
|
997 |
+
species_index = torch.tensor([[data["organism"]] for data in batch])
|
998 |
+
tokenized["token_type_ids"] = species_index.repeat(1, seq_len)
|
999 |
+
|
1000 |
+
return tokenized
|
1001 |
+
|
1002 |
+
|
1003 |
+
def validate_and_convert_organism(organism: Union[int, str]) -> Tuple[int, str]:
|
1004 |
+
"""
|
1005 |
+
Validate and convert the organism input to both ID and name.
|
1006 |
+
|
1007 |
+
This function takes either an organism ID or name as input and returns both
|
1008 |
+
the ID and name. It performs validation to ensure the input corresponds to
|
1009 |
+
a valid organism in the ORGANISM2ID dictionary.
|
1010 |
+
|
1011 |
+
Args:
|
1012 |
+
organism (Union[int, str]): Either the ID of the organism (int) or its
|
1013 |
+
name (str).
|
1014 |
+
|
1015 |
+
Returns:
|
1016 |
+
Tuple[int, str]: A tuple containing the organism ID (int) and name (str).
|
1017 |
+
|
1018 |
+
Raises:
|
1019 |
+
ValueError: If the input is neither a string nor an integer, if the
|
1020 |
+
organism name is not found in ORGANISM2ID, if the organism ID is not a
|
1021 |
+
value in ORGANISM2ID, or if no name is found for a given ID.
|
1022 |
+
|
1023 |
+
Note:
|
1024 |
+
This function relies on the ORGANISM2ID dictionary imported from
|
1025 |
+
CodonTransformer.CodonUtils, which maps organism names to their
|
1026 |
+
corresponding IDs.
|
1027 |
+
"""
|
1028 |
+
if isinstance(organism, str):
|
1029 |
+
if organism not in ORGANISM2ID:
|
1030 |
+
raise ValueError(
|
1031 |
+
f"Invalid organism name: {organism}. "
|
1032 |
+
"Please use a valid organism name or ID."
|
1033 |
+
)
|
1034 |
+
organism_id = ORGANISM2ID[organism]
|
1035 |
+
organism_name = organism
|
1036 |
+
|
1037 |
+
elif isinstance(organism, int):
|
1038 |
+
if organism not in ORGANISM2ID.values():
|
1039 |
+
raise ValueError(
|
1040 |
+
f"Invalid organism ID: {organism}. "
|
1041 |
+
"Please use a valid organism name or ID."
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
organism_id = organism
|
1045 |
+
organism_name = next(
|
1046 |
+
(name for name, id in ORGANISM2ID.items() if id == organism), None
|
1047 |
+
)
|
1048 |
+
if organism_name is None:
|
1049 |
+
raise ValueError(f"No organism name found for ID: {organism}")
|
1050 |
+
|
1051 |
+
return organism_id, organism_name
|
1052 |
+
|
1053 |
+
|
1054 |
+
def get_high_frequency_choice_sequence(
|
1055 |
+
protein: str, codon_frequencies: Dict[str, Tuple[List[str], List[float]]]
|
1056 |
+
) -> str:
|
1057 |
+
"""
|
1058 |
+
Return the DNA sequence optimized using High Frequency Choice (HFC) approach
|
1059 |
+
in which the most frequent codon for a given amino acid is always chosen.
|
1060 |
+
|
1061 |
+
Args:
|
1062 |
+
protein (str): The protein sequence.
|
1063 |
+
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
|
1064 |
+
frequencies for each amino acid.
|
1065 |
+
|
1066 |
+
Returns:
|
1067 |
+
str: The optimized DNA sequence.
|
1068 |
+
"""
|
1069 |
+
# Select the most frequent codon for each amino acid in the protein sequence
|
1070 |
+
dna_codons = [
|
1071 |
+
codon_frequencies[aminoacid][0][np.argmax(codon_frequencies[aminoacid][1])]
|
1072 |
+
for aminoacid in protein
|
1073 |
+
]
|
1074 |
+
return "".join(dna_codons)
|
1075 |
+
|
1076 |
+
|
1077 |
+
def precompute_most_frequent_codons(
|
1078 |
+
codon_frequencies: Dict[str, Tuple[List[str], List[float]]],
|
1079 |
+
) -> Dict[str, str]:
|
1080 |
+
"""
|
1081 |
+
Precompute the most frequent codon for each amino acid.
|
1082 |
+
|
1083 |
+
Args:
|
1084 |
+
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
|
1085 |
+
frequencies for each amino acid.
|
1086 |
+
|
1087 |
+
Returns:
|
1088 |
+
Dict[str, str]: The most frequent codon for each amino acid.
|
1089 |
+
"""
|
1090 |
+
# Create a dictionary mapping each amino acid to its most frequent codon
|
1091 |
+
return {
|
1092 |
+
aminoacid: codons[np.argmax(frequencies)]
|
1093 |
+
for aminoacid, (codons, frequencies) in codon_frequencies.items()
|
1094 |
+
}
|
1095 |
+
|
1096 |
+
|
1097 |
+
def get_high_frequency_choice_sequence_optimized(
|
1098 |
+
protein: str, codon_frequencies: Dict[str, Tuple[List[str], List[float]]]
|
1099 |
+
) -> str:
|
1100 |
+
"""
|
1101 |
+
Efficient implementation of get_high_frequency_choice_sequence that uses
|
1102 |
+
vectorized operations and helper functions, achieving up to x10 faster speed.
|
1103 |
+
|
1104 |
+
Args:
|
1105 |
+
protein (str): The protein sequence.
|
1106 |
+
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
|
1107 |
+
frequencies for each amino acid.
|
1108 |
+
|
1109 |
+
Returns:
|
1110 |
+
str: The optimized DNA sequence.
|
1111 |
+
"""
|
1112 |
+
# Precompute the most frequent codons for each amino acid
|
1113 |
+
most_frequent_codons = precompute_most_frequent_codons(codon_frequencies)
|
1114 |
+
|
1115 |
+
return "".join(most_frequent_codons[aminoacid] for aminoacid in protein)
|
1116 |
+
|
1117 |
+
|
1118 |
+
def get_background_frequency_choice_sequence(
|
1119 |
+
protein: str, codon_frequencies: Dict[str, Tuple[List[str], List[float]]]
|
1120 |
+
) -> str:
|
1121 |
+
"""
|
1122 |
+
Return the DNA sequence optimized using Background Frequency Choice (BFC)
|
1123 |
+
approach in which a random codon for a given amino acid is chosen using
|
1124 |
+
the codon frequencies probability distribution.
|
1125 |
+
|
1126 |
+
Args:
|
1127 |
+
protein (str): The protein sequence.
|
1128 |
+
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
|
1129 |
+
frequencies for each amino acid.
|
1130 |
+
|
1131 |
+
Returns:
|
1132 |
+
str: The optimized DNA sequence.
|
1133 |
+
"""
|
1134 |
+
# Select a random codon for each amino acid based on the codon frequencies
|
1135 |
+
# probability distribution
|
1136 |
+
dna_codons = [
|
1137 |
+
np.random.choice(
|
1138 |
+
codon_frequencies[aminoacid][0], p=codon_frequencies[aminoacid][1]
|
1139 |
+
)
|
1140 |
+
for aminoacid in protein
|
1141 |
+
]
|
1142 |
+
return "".join(dna_codons)
|
1143 |
+
|
1144 |
+
|
1145 |
+
def precompute_cdf(
|
1146 |
+
codon_frequencies: Dict[str, Tuple[List[str], List[float]]],
|
1147 |
+
) -> Dict[str, Tuple[List[str], Any]]:
|
1148 |
+
"""
|
1149 |
+
Precompute the cumulative distribution function (CDF) for each amino acid.
|
1150 |
+
|
1151 |
+
Args:
|
1152 |
+
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
|
1153 |
+
frequencies for each amino acid.
|
1154 |
+
|
1155 |
+
Returns:
|
1156 |
+
Dict[str, Tuple[List[str], Any]]: CDFs for each amino acid.
|
1157 |
+
"""
|
1158 |
+
cdf = {}
|
1159 |
+
|
1160 |
+
# Calculate the cumulative distribution function for each amino acid
|
1161 |
+
for aminoacid, (codons, frequencies) in codon_frequencies.items():
|
1162 |
+
cdf[aminoacid] = (codons, np.cumsum(frequencies))
|
1163 |
+
|
1164 |
+
return cdf
|
1165 |
+
|
1166 |
+
|
1167 |
+
def get_background_frequency_choice_sequence_optimized(
|
1168 |
+
protein: str, codon_frequencies: Dict[str, Tuple[List[str], List[float]]]
|
1169 |
+
) -> str:
|
1170 |
+
"""
|
1171 |
+
Efficient implementation of get_background_frequency_choice_sequence that uses
|
1172 |
+
vectorized operations and helper functions, achieving up to x8 faster speed.
|
1173 |
+
|
1174 |
+
Args:
|
1175 |
+
protein (str): The protein sequence.
|
1176 |
+
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
|
1177 |
+
frequencies for each amino acid.
|
1178 |
+
|
1179 |
+
Returns:
|
1180 |
+
str: The optimized DNA sequence.
|
1181 |
+
"""
|
1182 |
+
dna_codons = []
|
1183 |
+
cdf = precompute_cdf(codon_frequencies)
|
1184 |
+
|
1185 |
+
# Select a random codon for each amino acid using the precomputed CDFs
|
1186 |
+
for aminoacid in protein:
|
1187 |
+
codons, cumulative_prob = cdf[aminoacid]
|
1188 |
+
selected_codon_index = np.searchsorted(cumulative_prob, np.random.rand())
|
1189 |
+
dna_codons.append(codons[selected_codon_index])
|
1190 |
+
|
1191 |
+
return "".join(dna_codons)
|
1192 |
+
|
1193 |
+
|
1194 |
+
def get_uniform_random_choice_sequence(
|
1195 |
+
protein: str, codon_frequencies: Dict[str, Tuple[List[str], List[float]]]
|
1196 |
+
) -> str:
|
1197 |
+
"""
|
1198 |
+
Return the DNA sequence optimized using Uniform Random Choice (URC) approach
|
1199 |
+
in which a random codon for a given amino acid is chosen using a uniform
|
1200 |
+
prior.
|
1201 |
+
|
1202 |
+
Args:
|
1203 |
+
protein (str): The protein sequence.
|
1204 |
+
codon_frequencies (Dict[str, Tuple[List[str], List[float]]]): Codon
|
1205 |
+
frequencies for each amino acid.
|
1206 |
+
|
1207 |
+
Returns:
|
1208 |
+
str: The optimized DNA sequence.
|
1209 |
+
"""
|
1210 |
+
# Select a random codon for each amino acid using a uniform prior distribution
|
1211 |
+
dna_codons = []
|
1212 |
+
for aminoacid in protein:
|
1213 |
+
codons = codon_frequencies[aminoacid][0]
|
1214 |
+
random_index = np.random.randint(0, len(codons))
|
1215 |
+
dna_codons.append(codons[random_index])
|
1216 |
+
return "".join(dna_codons)
|
1217 |
+
|
1218 |
+
|
1219 |
+
def get_icor_prediction(input_seq: str, model_path: str, stop_symbol: str) -> str:
|
1220 |
+
"""
|
1221 |
+
Return the optimized codon sequence for the given protein sequence using ICOR.
|
1222 |
+
|
1223 |
+
Credit: ICOR: improving codon optimization with recurrent neural networks
|
1224 |
+
Rishab Jain, Aditya Jain, Elizabeth Mauro, Kevin LeShane, Douglas
|
1225 |
+
Densmore
|
1226 |
+
|
1227 |
+
Args:
|
1228 |
+
input_seq (str): The input protein sequence.
|
1229 |
+
model_path (str): The path to the ICOR model.
|
1230 |
+
stop_symbol (str): The symbol representing stop codons in the sequence.
|
1231 |
+
|
1232 |
+
Returns:
|
1233 |
+
str: The optimized DNA sequence.
|
1234 |
+
"""
|
1235 |
+
input_seq = input_seq.strip().upper()
|
1236 |
+
input_seq = input_seq.replace(stop_symbol, "*")
|
1237 |
+
|
1238 |
+
# Define categorical labels from when model was trained.
|
1239 |
+
labels = [
|
1240 |
+
"AAA",
|
1241 |
+
"AAC",
|
1242 |
+
"AAG",
|
1243 |
+
"AAT",
|
1244 |
+
"ACA",
|
1245 |
+
"ACG",
|
1246 |
+
"ACT",
|
1247 |
+
"AGC",
|
1248 |
+
"ATA",
|
1249 |
+
"ATC",
|
1250 |
+
"ATG",
|
1251 |
+
"ATT",
|
1252 |
+
"CAA",
|
1253 |
+
"CAC",
|
1254 |
+
"CAG",
|
1255 |
+
"CCG",
|
1256 |
+
"CCT",
|
1257 |
+
"CTA",
|
1258 |
+
"CTC",
|
1259 |
+
"CTG",
|
1260 |
+
"CTT",
|
1261 |
+
"GAA",
|
1262 |
+
"GAT",
|
1263 |
+
"GCA",
|
1264 |
+
"GCC",
|
1265 |
+
"GCG",
|
1266 |
+
"GCT",
|
1267 |
+
"GGA",
|
1268 |
+
"GGC",
|
1269 |
+
"GTC",
|
1270 |
+
"GTG",
|
1271 |
+
"GTT",
|
1272 |
+
"TAA",
|
1273 |
+
"TAT",
|
1274 |
+
"TCA",
|
1275 |
+
"TCG",
|
1276 |
+
"TCT",
|
1277 |
+
"TGG",
|
1278 |
+
"TGT",
|
1279 |
+
"TTA",
|
1280 |
+
"TTC",
|
1281 |
+
"TTG",
|
1282 |
+
"TTT",
|
1283 |
+
"ACC",
|
1284 |
+
"CAT",
|
1285 |
+
"CCA",
|
1286 |
+
"CGG",
|
1287 |
+
"CGT",
|
1288 |
+
"GAC",
|
1289 |
+
"GAG",
|
1290 |
+
"GGT",
|
1291 |
+
"AGT",
|
1292 |
+
"GGG",
|
1293 |
+
"GTA",
|
1294 |
+
"TGC",
|
1295 |
+
"CCC",
|
1296 |
+
"CGA",
|
1297 |
+
"CGC",
|
1298 |
+
"TAC",
|
1299 |
+
"TAG",
|
1300 |
+
"TCC",
|
1301 |
+
"AGA",
|
1302 |
+
"AGG",
|
1303 |
+
"TGA",
|
1304 |
+
]
|
1305 |
+
|
1306 |
+
# Define aa to integer table
|
1307 |
+
def aa2int(seq: str) -> List[int]:
|
1308 |
+
_aa2int = {
|
1309 |
+
"A": 1,
|
1310 |
+
"R": 2,
|
1311 |
+
"N": 3,
|
1312 |
+
"D": 4,
|
1313 |
+
"C": 5,
|
1314 |
+
"Q": 6,
|
1315 |
+
"E": 7,
|
1316 |
+
"G": 8,
|
1317 |
+
"H": 9,
|
1318 |
+
"I": 10,
|
1319 |
+
"L": 11,
|
1320 |
+
"K": 12,
|
1321 |
+
"M": 13,
|
1322 |
+
"F": 14,
|
1323 |
+
"P": 15,
|
1324 |
+
"S": 16,
|
1325 |
+
"T": 17,
|
1326 |
+
"W": 18,
|
1327 |
+
"Y": 19,
|
1328 |
+
"V": 20,
|
1329 |
+
"B": 21,
|
1330 |
+
"Z": 22,
|
1331 |
+
"X": 23,
|
1332 |
+
"*": 24,
|
1333 |
+
"-": 25,
|
1334 |
+
"?": 26,
|
1335 |
+
}
|
1336 |
+
return [_aa2int[i] for i in seq]
|
1337 |
+
|
1338 |
+
# Create empty array to fill
|
1339 |
+
oh_array = np.zeros(shape=(26, len(input_seq)))
|
1340 |
+
|
1341 |
+
# Load placements from aa2int
|
1342 |
+
aa_placement = aa2int(input_seq)
|
1343 |
+
|
1344 |
+
# One-hot encode the amino acid sequence:
|
1345 |
+
|
1346 |
+
# style nit: more pythonic to write for i in range(0, len(aa_placement)):
|
1347 |
+
for i in range(0, len(aa_placement)):
|
1348 |
+
oh_array[aa_placement[i], i] = 1
|
1349 |
+
i += 1
|
1350 |
+
|
1351 |
+
oh_array = [oh_array]
|
1352 |
+
x = np.array(np.transpose(oh_array))
|
1353 |
+
|
1354 |
+
y = x.astype(np.float32)
|
1355 |
+
|
1356 |
+
y = np.reshape(y, (y.shape[0], 1, 26))
|
1357 |
+
|
1358 |
+
# Start ICOR session using model.
|
1359 |
+
sess = rt.InferenceSession(model_path)
|
1360 |
+
input_name = sess.get_inputs()[0].name
|
1361 |
+
|
1362 |
+
# Get prediction:
|
1363 |
+
pred_onx = sess.run(None, {input_name: y})
|
1364 |
+
|
1365 |
+
# Get the index of the highest probability from softmax output:
|
1366 |
+
pred_indices = []
|
1367 |
+
for pred in pred_onx[0]:
|
1368 |
+
pred_indices.append(np.argmax(pred))
|
1369 |
+
|
1370 |
+
out_str = ""
|
1371 |
+
for index in pred_indices:
|
1372 |
+
out_str += labels[index]
|
1373 |
+
|
1374 |
+
return out_str
|
CodonTransformer/CodonUtils.py
ADDED
@@ -0,0 +1,871 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: CodonUtils.py
|
3 |
+
---------------------
|
4 |
+
Includes constants and helper functions used by other Python scripts.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import itertools
|
8 |
+
import json
|
9 |
+
import os
|
10 |
+
import pickle
|
11 |
+
import re
|
12 |
+
from abc import ABC, abstractmethod
|
13 |
+
from dataclasses import dataclass
|
14 |
+
from typing import Any, Dict, Iterator, List, Optional, Tuple
|
15 |
+
|
16 |
+
import pandas as pd
|
17 |
+
import requests
|
18 |
+
import torch
|
19 |
+
|
20 |
+
# List of all amino acids
|
21 |
+
AMINO_ACIDS: List[str] = [
|
22 |
+
"A", # Alanine
|
23 |
+
"C", # Cysteine
|
24 |
+
"D", # Aspartic acid
|
25 |
+
"E", # Glutamic acid
|
26 |
+
"F", # Phenylalanine
|
27 |
+
"G", # Glycine
|
28 |
+
"H", # Histidine
|
29 |
+
"I", # Isoleucine
|
30 |
+
"K", # Lysine
|
31 |
+
"L", # Leucine
|
32 |
+
"M", # Methionine
|
33 |
+
"N", # Asparagine
|
34 |
+
"P", # Proline
|
35 |
+
"Q", # Glutamine
|
36 |
+
"R", # Arginine
|
37 |
+
"S", # Serine
|
38 |
+
"T", # Threonine
|
39 |
+
"V", # Valine
|
40 |
+
"W", # Tryptophan
|
41 |
+
"Y", # Tyrosine
|
42 |
+
]
|
43 |
+
STOP_SYMBOLS = ["_", "*"] # Stop codon symbols
|
44 |
+
|
45 |
+
# Dictionary ambiguous amino acids to standard amino acids
|
46 |
+
AMBIGUOUS_AMINOACID_MAP: Dict[str, list[str]] = {
|
47 |
+
"B": ["N", "D"], # Asparagine (N) or Aspartic acid (D)
|
48 |
+
"Z": ["Q", "E"], # Glutamine (Q) or Glutamic acid (E)
|
49 |
+
"X": ["A"], # Any amino acid (typically replaced with Alanine)
|
50 |
+
"J": ["L", "I"], # Leucine (L) or Isoleucine (I)
|
51 |
+
"U": ["C"], # Selenocysteine (typically replaced with Cysteine)
|
52 |
+
"O": ["K"], # Pyrrolysine (typically replaced with Lysine)
|
53 |
+
}
|
54 |
+
|
55 |
+
# List of all possible start and stop codons
|
56 |
+
START_CODONS: List[str] = ["ATG", "TTG", "CTG", "GTG"]
|
57 |
+
STOP_CODONS: List[str] = ["TAA", "TAG", "TGA"]
|
58 |
+
|
59 |
+
# Token-to-index mapping for amino acids and special tokens
|
60 |
+
TOKEN2INDEX: Dict[str, int] = {
|
61 |
+
"[UNK]": 0,
|
62 |
+
"[CLS]": 1,
|
63 |
+
"[SEP]": 2,
|
64 |
+
"[PAD]": 3,
|
65 |
+
"[MASK]": 4,
|
66 |
+
"a_unk": 5,
|
67 |
+
"c_unk": 6,
|
68 |
+
"d_unk": 7,
|
69 |
+
"e_unk": 8,
|
70 |
+
"f_unk": 9,
|
71 |
+
"g_unk": 10,
|
72 |
+
"h_unk": 11,
|
73 |
+
"i_unk": 12,
|
74 |
+
"k_unk": 13,
|
75 |
+
"l_unk": 14,
|
76 |
+
"m_unk": 15,
|
77 |
+
"n_unk": 16,
|
78 |
+
"p_unk": 17,
|
79 |
+
"q_unk": 18,
|
80 |
+
"r_unk": 19,
|
81 |
+
"s_unk": 20,
|
82 |
+
"t_unk": 21,
|
83 |
+
"v_unk": 22,
|
84 |
+
"w_unk": 23,
|
85 |
+
"y_unk": 24,
|
86 |
+
"__unk": 25,
|
87 |
+
"k_aaa": 26,
|
88 |
+
"n_aac": 27,
|
89 |
+
"k_aag": 28,
|
90 |
+
"n_aat": 29,
|
91 |
+
"t_aca": 30,
|
92 |
+
"t_acc": 31,
|
93 |
+
"t_acg": 32,
|
94 |
+
"t_act": 33,
|
95 |
+
"r_aga": 34,
|
96 |
+
"s_agc": 35,
|
97 |
+
"r_agg": 36,
|
98 |
+
"s_agt": 37,
|
99 |
+
"i_ata": 38,
|
100 |
+
"i_atc": 39,
|
101 |
+
"m_atg": 40,
|
102 |
+
"i_att": 41,
|
103 |
+
"q_caa": 42,
|
104 |
+
"h_cac": 43,
|
105 |
+
"q_cag": 44,
|
106 |
+
"h_cat": 45,
|
107 |
+
"p_cca": 46,
|
108 |
+
"p_ccc": 47,
|
109 |
+
"p_ccg": 48,
|
110 |
+
"p_cct": 49,
|
111 |
+
"r_cga": 50,
|
112 |
+
"r_cgc": 51,
|
113 |
+
"r_cgg": 52,
|
114 |
+
"r_cgt": 53,
|
115 |
+
"l_cta": 54,
|
116 |
+
"l_ctc": 55,
|
117 |
+
"l_ctg": 56,
|
118 |
+
"l_ctt": 57,
|
119 |
+
"e_gaa": 58,
|
120 |
+
"d_gac": 59,
|
121 |
+
"e_gag": 60,
|
122 |
+
"d_gat": 61,
|
123 |
+
"a_gca": 62,
|
124 |
+
"a_gcc": 63,
|
125 |
+
"a_gcg": 64,
|
126 |
+
"a_gct": 65,
|
127 |
+
"g_gga": 66,
|
128 |
+
"g_ggc": 67,
|
129 |
+
"g_ggg": 68,
|
130 |
+
"g_ggt": 69,
|
131 |
+
"v_gta": 70,
|
132 |
+
"v_gtc": 71,
|
133 |
+
"v_gtg": 72,
|
134 |
+
"v_gtt": 73,
|
135 |
+
"__taa": 74,
|
136 |
+
"y_tac": 75,
|
137 |
+
"__tag": 76,
|
138 |
+
"y_tat": 77,
|
139 |
+
"s_tca": 78,
|
140 |
+
"s_tcc": 79,
|
141 |
+
"s_tcg": 80,
|
142 |
+
"s_tct": 81,
|
143 |
+
"__tga": 82,
|
144 |
+
"c_tgc": 83,
|
145 |
+
"w_tgg": 84,
|
146 |
+
"c_tgt": 85,
|
147 |
+
"l_tta": 86,
|
148 |
+
"f_ttc": 87,
|
149 |
+
"l_ttg": 88,
|
150 |
+
"f_ttt": 89,
|
151 |
+
}
|
152 |
+
|
153 |
+
# Index-to-token mapping, reverse of TOKEN2INDEX
|
154 |
+
INDEX2TOKEN: Dict[int, str] = {i: c for c, i in TOKEN2INDEX.items()}
|
155 |
+
|
156 |
+
# Dictionary mapping each codon to its GC content
|
157 |
+
CODON_GC_CONTENT: Dict[str, int] = {
|
158 |
+
token.split("_")[1]: token.split("_")[1].upper().count("G") + token.split("_")[1].upper().count("C")
|
159 |
+
for token in TOKEN2INDEX
|
160 |
+
if "_" in token and len(token.split("_")[1]) == 3
|
161 |
+
}
|
162 |
+
|
163 |
+
# Tensor with GC counts for each token in the vocabulary
|
164 |
+
GC_COUNTS_PER_TOKEN = torch.zeros(len(TOKEN2INDEX))
|
165 |
+
for token, index in TOKEN2INDEX.items():
|
166 |
+
if "_" in token and len(token.split("_")[1]) == 3:
|
167 |
+
codon = token.split("_")[1].upper()
|
168 |
+
gc_count = codon.count("G") + codon.count("C")
|
169 |
+
GC_COUNTS_PER_TOKEN[index] = gc_count
|
170 |
+
|
171 |
+
G_indices = [idx for token, idx in TOKEN2INDEX.items() if "g" in token.split("_")[-1]]
|
172 |
+
C_indices = [idx for token, idx in TOKEN2INDEX.items() if "c" in token.split("_")[-1]]
|
173 |
+
|
174 |
+
# Dictionary mapping each amino acid and stop symbol to indices of codon tokens that translate to it
|
175 |
+
AMINO_ACID_TO_INDEX = {
|
176 |
+
aa: sorted(
|
177 |
+
[i for t, i in TOKEN2INDEX.items() if t[0].upper() == aa and t[-3:] != "unk"]
|
178 |
+
)
|
179 |
+
for aa in (AMINO_ACIDS + STOP_SYMBOLS)
|
180 |
+
}
|
181 |
+
|
182 |
+
|
183 |
+
# Dictionary mapping each amino acid to min/max GC content across all possible codons
|
184 |
+
AA_MIN_GC: Dict[str, int] = {}
|
185 |
+
AA_MAX_GC: Dict[str, int] = {}
|
186 |
+
|
187 |
+
for aa, token_indices in AMINO_ACID_TO_INDEX.items():
|
188 |
+
if token_indices: # Skip if no tokens for this amino acid
|
189 |
+
gc_counts = []
|
190 |
+
for token_idx in token_indices:
|
191 |
+
token = INDEX2TOKEN[token_idx]
|
192 |
+
if "_" in token and len(token.split("_")[1]) == 3:
|
193 |
+
codon = token.split("_")[1]
|
194 |
+
if codon in CODON_GC_CONTENT:
|
195 |
+
gc_counts.append(CODON_GC_CONTENT[codon])
|
196 |
+
|
197 |
+
if gc_counts:
|
198 |
+
AA_MIN_GC[aa] = min(gc_counts)
|
199 |
+
AA_MAX_GC[aa] = max(gc_counts)
|
200 |
+
|
201 |
+
# Mask token mapping
|
202 |
+
TOKEN2MASK: Dict[int, int] = {
|
203 |
+
0: 0,
|
204 |
+
1: 1,
|
205 |
+
2: 2,
|
206 |
+
3: 3,
|
207 |
+
4: 4,
|
208 |
+
5: 5,
|
209 |
+
6: 6,
|
210 |
+
7: 7,
|
211 |
+
8: 8,
|
212 |
+
9: 9,
|
213 |
+
10: 10,
|
214 |
+
11: 11,
|
215 |
+
12: 12,
|
216 |
+
13: 13,
|
217 |
+
14: 14,
|
218 |
+
15: 15,
|
219 |
+
16: 16,
|
220 |
+
17: 17,
|
221 |
+
18: 18,
|
222 |
+
19: 19,
|
223 |
+
20: 20,
|
224 |
+
21: 21,
|
225 |
+
22: 22,
|
226 |
+
23: 23,
|
227 |
+
24: 24,
|
228 |
+
25: 25,
|
229 |
+
26: 13,
|
230 |
+
27: 16,
|
231 |
+
28: 13,
|
232 |
+
29: 16,
|
233 |
+
30: 21,
|
234 |
+
31: 21,
|
235 |
+
32: 21,
|
236 |
+
33: 21,
|
237 |
+
34: 19,
|
238 |
+
35: 20,
|
239 |
+
36: 19,
|
240 |
+
37: 20,
|
241 |
+
38: 12,
|
242 |
+
39: 12,
|
243 |
+
40: 15,
|
244 |
+
41: 12,
|
245 |
+
42: 18,
|
246 |
+
43: 11,
|
247 |
+
44: 18,
|
248 |
+
45: 11,
|
249 |
+
46: 17,
|
250 |
+
47: 17,
|
251 |
+
48: 17,
|
252 |
+
49: 17,
|
253 |
+
50: 19,
|
254 |
+
51: 19,
|
255 |
+
52: 19,
|
256 |
+
53: 19,
|
257 |
+
54: 14,
|
258 |
+
55: 14,
|
259 |
+
56: 14,
|
260 |
+
57: 14,
|
261 |
+
58: 8,
|
262 |
+
59: 7,
|
263 |
+
60: 8,
|
264 |
+
61: 7,
|
265 |
+
62: 5,
|
266 |
+
63: 5,
|
267 |
+
64: 5,
|
268 |
+
65: 5,
|
269 |
+
66: 10,
|
270 |
+
67: 10,
|
271 |
+
68: 10,
|
272 |
+
69: 10,
|
273 |
+
70: 22,
|
274 |
+
71: 22,
|
275 |
+
72: 22,
|
276 |
+
73: 22,
|
277 |
+
74: 25,
|
278 |
+
75: 24,
|
279 |
+
76: 25,
|
280 |
+
77: 24,
|
281 |
+
78: 20,
|
282 |
+
79: 20,
|
283 |
+
80: 20,
|
284 |
+
81: 20,
|
285 |
+
82: 25,
|
286 |
+
83: 6,
|
287 |
+
84: 23,
|
288 |
+
85: 6,
|
289 |
+
86: 14,
|
290 |
+
87: 9,
|
291 |
+
88: 14,
|
292 |
+
89: 9,
|
293 |
+
}
|
294 |
+
|
295 |
+
# List of organisms used for fine-tuning
|
296 |
+
FINE_TUNE_ORGANISMS: List[str] = [
|
297 |
+
"Arabidopsis thaliana",
|
298 |
+
"Bacillus subtilis",
|
299 |
+
"Caenorhabditis elegans",
|
300 |
+
"Chlamydomonas reinhardtii",
|
301 |
+
"Chlamydomonas reinhardtii chloroplast",
|
302 |
+
"Danio rerio",
|
303 |
+
"Drosophila melanogaster",
|
304 |
+
"Homo sapiens",
|
305 |
+
"Mus musculus",
|
306 |
+
"Nicotiana tabacum",
|
307 |
+
"Nicotiana tabacum chloroplast",
|
308 |
+
"Pseudomonas putida",
|
309 |
+
"Saccharomyces cerevisiae",
|
310 |
+
"Escherichia coli O157-H7 str. Sakai",
|
311 |
+
"Escherichia coli general",
|
312 |
+
"Escherichia coli str. K-12 substr. MG1655",
|
313 |
+
"Thermococcus barophilus MPT",
|
314 |
+
]
|
315 |
+
|
316 |
+
# List of organisms most commonly used for coodn optimization
|
317 |
+
COMMON_ORGANISMS: List[str] = [
|
318 |
+
"Arabidopsis thaliana",
|
319 |
+
"Bacillus subtilis",
|
320 |
+
"Caenorhabditis elegans",
|
321 |
+
"Chlamydomonas reinhardtii",
|
322 |
+
"Danio rerio",
|
323 |
+
"Drosophila melanogaster",
|
324 |
+
"Homo sapiens",
|
325 |
+
"Mus musculus",
|
326 |
+
"Nicotiana tabacum",
|
327 |
+
"Pseudomonas putida",
|
328 |
+
"Saccharomyces cerevisiae",
|
329 |
+
"Escherichia coli general",
|
330 |
+
]
|
331 |
+
|
332 |
+
# Dictionary mapping each organism name to respective organism id
|
333 |
+
ORGANISM2ID: Dict[str, int] = {
|
334 |
+
"Arabidopsis thaliana": 0,
|
335 |
+
"Atlantibacter hermannii": 1,
|
336 |
+
"Bacillus subtilis": 2,
|
337 |
+
"Brenneria goodwinii": 3,
|
338 |
+
"Buchnera aphidicola (Schizaphis graminum)": 4,
|
339 |
+
"Caenorhabditis elegans": 5,
|
340 |
+
"Candidatus Erwinia haradaeae": 6,
|
341 |
+
"Candidatus Hamiltonella defensa 5AT (Acyrthosiphon pisum)": 7,
|
342 |
+
"Chlamydomonas reinhardtii": 8,
|
343 |
+
"Chlamydomonas reinhardtii chloroplast": 9,
|
344 |
+
"Citrobacter amalonaticus": 10,
|
345 |
+
"Citrobacter braakii": 11,
|
346 |
+
"Citrobacter cronae": 12,
|
347 |
+
"Citrobacter europaeus": 13,
|
348 |
+
"Citrobacter farmeri": 14,
|
349 |
+
"Citrobacter freundii": 15,
|
350 |
+
"Citrobacter koseri ATCC BAA-895": 16,
|
351 |
+
"Citrobacter portucalensis": 17,
|
352 |
+
"Citrobacter werkmanii": 18,
|
353 |
+
"Citrobacter youngae": 19,
|
354 |
+
"Cronobacter dublinensis subsp. dublinensis LMG 23823": 20,
|
355 |
+
"Cronobacter malonaticus LMG 23826": 21,
|
356 |
+
"Cronobacter sakazakii": 22,
|
357 |
+
"Cronobacter turicensis": 23,
|
358 |
+
"Danio rerio": 24,
|
359 |
+
"Dickeya dadantii 3937": 25,
|
360 |
+
"Dickeya dianthicola": 26,
|
361 |
+
"Dickeya fangzhongdai": 27,
|
362 |
+
"Dickeya solani": 28,
|
363 |
+
"Dickeya zeae": 29,
|
364 |
+
"Drosophila melanogaster": 30,
|
365 |
+
"Edwardsiella anguillarum ET080813": 31,
|
366 |
+
"Edwardsiella ictaluri": 32,
|
367 |
+
"Edwardsiella piscicida": 33,
|
368 |
+
"Edwardsiella tarda": 34,
|
369 |
+
"Enterobacter asburiae": 35,
|
370 |
+
"Enterobacter bugandensis": 36,
|
371 |
+
"Enterobacter cancerogenus": 37,
|
372 |
+
"Enterobacter chengduensis": 38,
|
373 |
+
"Enterobacter cloacae": 39,
|
374 |
+
"Enterobacter hormaechei": 40,
|
375 |
+
"Enterobacter kobei": 41,
|
376 |
+
"Enterobacter ludwigii": 42,
|
377 |
+
"Enterobacter mori": 43,
|
378 |
+
"Enterobacter quasiroggenkampii": 44,
|
379 |
+
"Enterobacter roggenkampii": 45,
|
380 |
+
"Enterobacter sichuanensis": 46,
|
381 |
+
"Erwinia amylovora CFBP1430": 47,
|
382 |
+
"Erwinia persicina": 48,
|
383 |
+
"Escherichia albertii": 49,
|
384 |
+
"Escherichia coli O157-H7 str. Sakai": 50,
|
385 |
+
"Escherichia coli general": 51,
|
386 |
+
"Escherichia coli str. K-12 substr. MG1655": 52,
|
387 |
+
"Escherichia fergusonii": 53,
|
388 |
+
"Escherichia marmotae": 54,
|
389 |
+
"Escherichia ruysiae": 55,
|
390 |
+
"Ewingella americana": 56,
|
391 |
+
"Hafnia alvei": 57,
|
392 |
+
"Hafnia paralvei": 58,
|
393 |
+
"Homo sapiens": 59,
|
394 |
+
"Kalamiella piersonii": 60,
|
395 |
+
"Klebsiella aerogenes": 61,
|
396 |
+
"Klebsiella grimontii": 62,
|
397 |
+
"Klebsiella michiganensis": 63,
|
398 |
+
"Klebsiella oxytoca": 64,
|
399 |
+
"Klebsiella pasteurii": 65,
|
400 |
+
"Klebsiella pneumoniae subsp. pneumoniae HS11286": 66,
|
401 |
+
"Klebsiella quasipneumoniae": 67,
|
402 |
+
"Klebsiella quasivariicola": 68,
|
403 |
+
"Klebsiella variicola": 69,
|
404 |
+
"Kosakonia cowanii": 70,
|
405 |
+
"Kosakonia radicincitans": 71,
|
406 |
+
"Leclercia adecarboxylata": 72,
|
407 |
+
"Lelliottia amnigena": 73,
|
408 |
+
"Lonsdalea populi": 74,
|
409 |
+
"Moellerella wisconsensis": 75,
|
410 |
+
"Morganella morganii": 76,
|
411 |
+
"Mus musculus": 77,
|
412 |
+
"Nicotiana tabacum": 78,
|
413 |
+
"Nicotiana tabacum chloroplast": 79,
|
414 |
+
"Obesumbacterium proteus": 80,
|
415 |
+
"Pantoea agglomerans": 81,
|
416 |
+
"Pantoea allii": 82,
|
417 |
+
"Pantoea ananatis PA13": 83,
|
418 |
+
"Pantoea dispersa": 84,
|
419 |
+
"Pantoea stewartii": 85,
|
420 |
+
"Pantoea vagans": 86,
|
421 |
+
"Pectobacterium aroidearum": 87,
|
422 |
+
"Pectobacterium atrosepticum": 88,
|
423 |
+
"Pectobacterium brasiliense": 89,
|
424 |
+
"Pectobacterium carotovorum": 90,
|
425 |
+
"Pectobacterium odoriferum": 91,
|
426 |
+
"Pectobacterium parmentieri": 92,
|
427 |
+
"Pectobacterium polaris": 93,
|
428 |
+
"Pectobacterium versatile": 94,
|
429 |
+
"Photorhabdus laumondii subsp. laumondii TTO1": 95,
|
430 |
+
"Plesiomonas shigelloides": 96,
|
431 |
+
"Pluralibacter gergoviae": 97,
|
432 |
+
"Proteus faecis": 98,
|
433 |
+
"Proteus mirabilis HI4320": 99,
|
434 |
+
"Proteus penneri": 100,
|
435 |
+
"Proteus terrae subsp. cibarius": 101,
|
436 |
+
"Proteus vulgaris": 102,
|
437 |
+
"Providencia alcalifaciens": 103,
|
438 |
+
"Providencia heimbachae": 104,
|
439 |
+
"Providencia rettgeri": 105,
|
440 |
+
"Providencia rustigianii": 106,
|
441 |
+
"Providencia stuartii": 107,
|
442 |
+
"Providencia thailandensis": 108,
|
443 |
+
"Pseudomonas putida": 109,
|
444 |
+
"Pyrococcus furiosus": 110,
|
445 |
+
"Pyrococcus horikoshii": 111,
|
446 |
+
"Pyrococcus yayanosii": 112,
|
447 |
+
"Rahnella aquatilis CIP 78.65 = ATCC 33071": 113,
|
448 |
+
"Raoultella ornithinolytica": 114,
|
449 |
+
"Raoultella planticola": 115,
|
450 |
+
"Raoultella terrigena": 116,
|
451 |
+
"Rosenbergiella epipactidis": 117,
|
452 |
+
"Rouxiella badensis": 118,
|
453 |
+
"Saccharolobus solfataricus": 119,
|
454 |
+
"Saccharomyces cerevisiae": 120,
|
455 |
+
"Salmonella bongori N268-08": 121,
|
456 |
+
"Salmonella enterica subsp. enterica serovar Typhimurium str. LT2": 122,
|
457 |
+
"Serratia bockelmannii": 123,
|
458 |
+
"Serratia entomophila": 124,
|
459 |
+
"Serratia ficaria": 125,
|
460 |
+
"Serratia fonticola": 126,
|
461 |
+
"Serratia grimesii": 127,
|
462 |
+
"Serratia liquefaciens": 128,
|
463 |
+
"Serratia marcescens": 129,
|
464 |
+
"Serratia nevei": 130,
|
465 |
+
"Serratia plymuthica AS9": 131,
|
466 |
+
"Serratia proteamaculans": 132,
|
467 |
+
"Serratia quinivorans": 133,
|
468 |
+
"Serratia rubidaea": 134,
|
469 |
+
"Serratia ureilytica": 135,
|
470 |
+
"Shigella boydii": 136,
|
471 |
+
"Shigella dysenteriae": 137,
|
472 |
+
"Shigella flexneri 2a str. 301": 138,
|
473 |
+
"Shigella sonnei": 139,
|
474 |
+
"Thermoccoccus kodakarensis": 140,
|
475 |
+
"Thermococcus barophilus MPT": 141,
|
476 |
+
"Thermococcus chitonophagus": 142,
|
477 |
+
"Thermococcus gammatolerans": 143,
|
478 |
+
"Thermococcus litoralis": 144,
|
479 |
+
"Thermococcus onnurineus": 145,
|
480 |
+
"Thermococcus sibiricus": 146,
|
481 |
+
"Xenorhabdus bovienii str. feltiae Florida": 147,
|
482 |
+
"Yersinia aldovae 670-83": 148,
|
483 |
+
"Yersinia aleksiciae": 149,
|
484 |
+
"Yersinia alsatica": 150,
|
485 |
+
"Yersinia enterocolitica": 151,
|
486 |
+
"Yersinia frederiksenii ATCC 33641": 152,
|
487 |
+
"Yersinia intermedia": 153,
|
488 |
+
"Yersinia kristensenii": 154,
|
489 |
+
"Yersinia massiliensis CCUG 53443": 155,
|
490 |
+
"Yersinia mollaretii ATCC 43969": 156,
|
491 |
+
"Yersinia pestis A1122": 157,
|
492 |
+
"Yersinia proxima": 158,
|
493 |
+
"Yersinia pseudotuberculosis IP 32953": 159,
|
494 |
+
"Yersinia rochesterensis": 160,
|
495 |
+
"Yersinia rohdei": 161,
|
496 |
+
"Yersinia ruckeri": 162,
|
497 |
+
"Yokenella regensburgei": 163,
|
498 |
+
}
|
499 |
+
|
500 |
+
# Dictionary mapping each organism id to respective organism name
|
501 |
+
ID2ORGANISM = {v: k for k, v in ORGANISM2ID.items()}
|
502 |
+
|
503 |
+
# Type alias for amino acid to codon mapping
|
504 |
+
AMINO2CODON_TYPE = Dict[str, Tuple[List[str], List[float]]]
|
505 |
+
|
506 |
+
# Constants for the number of organisms and sequence lengths
|
507 |
+
NUM_ORGANISMS = 164
|
508 |
+
MAX_LEN = 2048
|
509 |
+
MAX_AMINO_ACIDS = MAX_LEN - 2 # Without special tokens [CLS] and [SEP]
|
510 |
+
STOP_SYMBOL = "_"
|
511 |
+
|
512 |
+
|
513 |
+
@dataclass
|
514 |
+
class DNASequencePrediction:
|
515 |
+
"""
|
516 |
+
A class to hold the output of the DNA sequence prediction.
|
517 |
+
|
518 |
+
Attributes:
|
519 |
+
organism (str): Name of the organism used for prediction.
|
520 |
+
protein (str): Input protein sequence for which DNA sequence is predicted.
|
521 |
+
processed_input (str): Processed input sequence (merged protein and DNA).
|
522 |
+
predicted_dna (str): Predicted DNA sequence.
|
523 |
+
"""
|
524 |
+
|
525 |
+
organism: str
|
526 |
+
protein: str
|
527 |
+
processed_input: str
|
528 |
+
predicted_dna: str
|
529 |
+
|
530 |
+
|
531 |
+
class IterableData(torch.utils.data.IterableDataset):
|
532 |
+
"""
|
533 |
+
Defines the logic for iterable datasets (working over streams of
|
534 |
+
data) in parallel multi-processing environments, e.g., multi-GPU.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
dist_env (Optional[str]): The distribution environment identifier
|
538 |
+
(e.g., "slurm").
|
539 |
+
|
540 |
+
Credit: Guillaume Filion
|
541 |
+
"""
|
542 |
+
|
543 |
+
def __init__(self, dist_env: Optional[str] = None):
|
544 |
+
super().__init__()
|
545 |
+
if dist_env is None:
|
546 |
+
self.world_size_handle, self.rank_handle = ("WORLD_SIZE", "LOCAL_RANK")
|
547 |
+
else:
|
548 |
+
self.world_size_handle, self.rank_handle = {
|
549 |
+
"slurm": ("SLURM_NTASKS", "SLURM_PROCID")
|
550 |
+
}.get(dist_env, ("WORLD_SIZE", "LOCAL_RANK"))
|
551 |
+
|
552 |
+
@property
|
553 |
+
def iterator(self) -> Iterator:
|
554 |
+
"""Define the stream logic for the dataset. Implement in subclasses."""
|
555 |
+
raise NotImplementedError
|
556 |
+
|
557 |
+
def __iter__(self) -> Iterator:
|
558 |
+
"""
|
559 |
+
Create an iterator for the dataset, handling multi-processing contexts.
|
560 |
+
|
561 |
+
Returns:
|
562 |
+
Iterator: The iterator for the dataset.
|
563 |
+
"""
|
564 |
+
worker_info = torch.utils.data.get_worker_info()
|
565 |
+
if worker_info is None:
|
566 |
+
return self.iterator
|
567 |
+
|
568 |
+
# In multi-processing context, use 'os.environ' to
|
569 |
+
# find global worker rank. Then use 'islice' to allocate
|
570 |
+
# the items of the stream to the workers.
|
571 |
+
world_size = int(os.environ.get(self.world_size_handle, "1"))
|
572 |
+
global_rank = int(os.environ.get(self.rank_handle, "0"))
|
573 |
+
local_rank = worker_info.id
|
574 |
+
local_num_workers = worker_info.num_workers
|
575 |
+
|
576 |
+
# Assume that each process has the same number of local workers.
|
577 |
+
worker_rk = global_rank * local_num_workers + local_rank
|
578 |
+
worker_nb = world_size * local_num_workers
|
579 |
+
return itertools.islice(self.iterator, worker_rk, None, worker_nb)
|
580 |
+
|
581 |
+
|
582 |
+
class IterableJSONData(IterableData):
|
583 |
+
"""
|
584 |
+
Iterate over the lines of a JSON file and uncompress if needed.
|
585 |
+
|
586 |
+
Args:
|
587 |
+
data_path (str): The path to the JSON data file.
|
588 |
+
train (bool): Flag indicating if the dataset is for training.
|
589 |
+
**kwargs: Additional keyword arguments for the base class.
|
590 |
+
"""
|
591 |
+
|
592 |
+
def __init__(self, data_path: str, train: bool = True, **kwargs):
|
593 |
+
super().__init__(**kwargs)
|
594 |
+
self.data_path = data_path
|
595 |
+
self.train = train
|
596 |
+
with open(os.path.join(self.data_path, "finetune_set.json"), "r") as f:
|
597 |
+
self.records = [json.loads(line) for line in f]
|
598 |
+
|
599 |
+
def __len__(self):
|
600 |
+
return len(self.records)
|
601 |
+
|
602 |
+
@property
|
603 |
+
def iterator(self) -> Iterator:
|
604 |
+
"""Define the stream logic for the dataset."""
|
605 |
+
for record in self.records:
|
606 |
+
yield record
|
607 |
+
|
608 |
+
|
609 |
+
class ConfigManager(ABC):
|
610 |
+
"""
|
611 |
+
Abstract base class for managing configuration settings.
|
612 |
+
"""
|
613 |
+
_config: Dict[str, Any]
|
614 |
+
|
615 |
+
def __enter__(self):
|
616 |
+
return self
|
617 |
+
|
618 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
619 |
+
if exc_type is not None:
|
620 |
+
print(f"Exception occurred: {exc_type}, {exc_value}, {traceback}")
|
621 |
+
self.reset_config()
|
622 |
+
|
623 |
+
@abstractmethod
|
624 |
+
def reset_config(self) -> None:
|
625 |
+
"""Reset the configuration to default values."""
|
626 |
+
pass
|
627 |
+
|
628 |
+
def get(self, key: str) -> Any:
|
629 |
+
"""
|
630 |
+
Get the value of a configuration key.
|
631 |
+
|
632 |
+
Args:
|
633 |
+
key (str): The key to retrieve the value for.
|
634 |
+
|
635 |
+
Returns:
|
636 |
+
Any: The value of the configuration key.
|
637 |
+
"""
|
638 |
+
return self._config.get(key)
|
639 |
+
|
640 |
+
def set(self, key: str, value: Any) -> None:
|
641 |
+
"""
|
642 |
+
Set the value of a configuration key.
|
643 |
+
|
644 |
+
Args:
|
645 |
+
key (str): The key to set the value for.
|
646 |
+
value (Any): The value to set for the key.
|
647 |
+
"""
|
648 |
+
self.validate_inputs(key, value)
|
649 |
+
self._config[key] = value
|
650 |
+
|
651 |
+
def update(self, config_dict: dict) -> None:
|
652 |
+
"""
|
653 |
+
Update the configuration with a dictionary of key-value pairs after validating them.
|
654 |
+
|
655 |
+
Args:
|
656 |
+
config_dict (dict): A dictionary of key-value pairs to update the configuration.
|
657 |
+
"""
|
658 |
+
for key, value in config_dict.items():
|
659 |
+
self.validate_inputs(key, value)
|
660 |
+
self._config.update(config_dict)
|
661 |
+
|
662 |
+
@abstractmethod
|
663 |
+
def validate_inputs(self, key: str, value: Any) -> None:
|
664 |
+
"""Validate the inputs for the configuration."""
|
665 |
+
pass
|
666 |
+
|
667 |
+
|
668 |
+
class ProteinConfig(ConfigManager):
|
669 |
+
"""
|
670 |
+
A class to manage configuration settings for protein sequences.
|
671 |
+
|
672 |
+
This class ensures that the configuration is a singleton.
|
673 |
+
It provides methods to get, set, and update configuration values.
|
674 |
+
|
675 |
+
Attributes:
|
676 |
+
_instance (Optional[ConfigManager]): The singleton instance of the ConfigManager.
|
677 |
+
_config (Dict[str, Any]): The configuration dictionary.
|
678 |
+
"""
|
679 |
+
|
680 |
+
_instance = None
|
681 |
+
|
682 |
+
def __new__(cls):
|
683 |
+
"""
|
684 |
+
Create a new instance of the ProteinConfig class.
|
685 |
+
|
686 |
+
Returns:
|
687 |
+
ProteinConfig: The singleton instance of the ProteinConfig.
|
688 |
+
"""
|
689 |
+
if cls._instance is None:
|
690 |
+
cls._instance = super(ProteinConfig, cls).__new__(cls)
|
691 |
+
cls._instance.reset_config()
|
692 |
+
return cls._instance
|
693 |
+
|
694 |
+
def validate_inputs(self, key: str, value: Any) -> None:
|
695 |
+
"""
|
696 |
+
Validate the inputs for the configuration.
|
697 |
+
|
698 |
+
Args:
|
699 |
+
key (str): The key to validate.
|
700 |
+
value (Any): The value to validate.
|
701 |
+
|
702 |
+
Raises:
|
703 |
+
ValueError: If the value is invalid.
|
704 |
+
TypeError: If the value is of the wrong type.
|
705 |
+
"""
|
706 |
+
if key == "ambiguous_aminoacid_behavior":
|
707 |
+
if value not in [
|
708 |
+
"raise_error",
|
709 |
+
"standardize_deterministic",
|
710 |
+
"standardize_random",
|
711 |
+
]:
|
712 |
+
raise ValueError(
|
713 |
+
f"Invalid value for ambiguous_aminoacid_behavior: {value}."
|
714 |
+
)
|
715 |
+
elif key == "ambiguous_aminoacid_map_override":
|
716 |
+
if not isinstance(value, dict):
|
717 |
+
raise TypeError(
|
718 |
+
f"Invalid type for ambiguous_aminoacid_map_override: {value}."
|
719 |
+
)
|
720 |
+
for ambiguous_aminoacid, aminoacids in value.items():
|
721 |
+
if not isinstance(aminoacids, list):
|
722 |
+
raise TypeError(f"Invalid type for aminoacids: {aminoacids}.")
|
723 |
+
if not aminoacids:
|
724 |
+
raise ValueError(
|
725 |
+
f"Override for aminoacid '{ambiguous_aminoacid}' cannot be empty list."
|
726 |
+
)
|
727 |
+
if ambiguous_aminoacid not in AMBIGUOUS_AMINOACID_MAP:
|
728 |
+
raise ValueError(
|
729 |
+
f"Invalid amino acid in ambiguous_aminoacid_map_override: {ambiguous_aminoacid}"
|
730 |
+
)
|
731 |
+
else:
|
732 |
+
raise ValueError(f"Invalid configuration key: {key}")
|
733 |
+
|
734 |
+
def reset_config(self) -> None:
|
735 |
+
"""
|
736 |
+
Reset the configuration to the default values.
|
737 |
+
"""
|
738 |
+
self._config = {
|
739 |
+
"ambiguous_aminoacid_behavior": "standardize_random",
|
740 |
+
"ambiguous_aminoacid_map_override": {},
|
741 |
+
}
|
742 |
+
|
743 |
+
|
744 |
+
def load_python_object_from_disk(file_path: str) -> Any:
|
745 |
+
"""
|
746 |
+
Load a Pickle object from disk and return it as a Python object.
|
747 |
+
|
748 |
+
Args:
|
749 |
+
file_path (str): The path to the Pickle file.
|
750 |
+
|
751 |
+
Returns:
|
752 |
+
Any: The loaded Python object.
|
753 |
+
"""
|
754 |
+
with open(file_path, "rb") as file:
|
755 |
+
return pickle.load(file)
|
756 |
+
|
757 |
+
|
758 |
+
def save_python_object_to_disk(input_object: Any, file_path: str) -> None:
|
759 |
+
"""
|
760 |
+
Save a Python object to disk using Pickle.
|
761 |
+
|
762 |
+
Args:
|
763 |
+
input_object (Any): The Python object to save.
|
764 |
+
file_path (str): The path where the object will be saved.
|
765 |
+
"""
|
766 |
+
with open(file_path, "wb") as file:
|
767 |
+
pickle.dump(input_object, file)
|
768 |
+
|
769 |
+
|
770 |
+
def find_pattern_in_fasta(keyword: str, text: str) -> str:
|
771 |
+
"""
|
772 |
+
Find a specific keyword pattern in text. Helpful for identifying parts
|
773 |
+
of a FASTA sequence.
|
774 |
+
|
775 |
+
Args:
|
776 |
+
keyword (str): The keyword pattern to search for.
|
777 |
+
text (str): The text to search within.
|
778 |
+
|
779 |
+
Returns:
|
780 |
+
str: The found pattern or an empty string if not found.
|
781 |
+
"""
|
782 |
+
# Search for the keyword pattern in the text using regex
|
783 |
+
result = re.search(keyword + r"=(.*?)]", text)
|
784 |
+
return result.group(1) if result else ""
|
785 |
+
|
786 |
+
|
787 |
+
def get_organism2id_dict(organism_reference: str) -> Dict[str, int]:
|
788 |
+
"""
|
789 |
+
Return a dictionary mapping each organism in training data to an index
|
790 |
+
used for training.
|
791 |
+
|
792 |
+
Args:
|
793 |
+
organism_reference (str): Path to a CSV file containing a list of
|
794 |
+
all organisms. The format of the CSV file should be as follows:
|
795 |
+
|
796 |
+
0,Escherichia coli
|
797 |
+
1,Homo sapiens
|
798 |
+
2,Mus musculus
|
799 |
+
|
800 |
+
Returns:
|
801 |
+
Dict[str, int]: Dictionary mapping organism names to their respective indices.
|
802 |
+
"""
|
803 |
+
# Read the CSV file and create a dictionary mapping organisms to their indices
|
804 |
+
organisms = pd.read_csv(organism_reference, index_col=0, header=None)
|
805 |
+
organism2id = {organisms.iloc[i].values[0]: i for i in organisms.index}
|
806 |
+
|
807 |
+
return organism2id
|
808 |
+
|
809 |
+
|
810 |
+
def get_taxonomy_id(
|
811 |
+
taxonomy_reference: str, organism: Optional[str] = None, return_dict: bool = False
|
812 |
+
) -> Any:
|
813 |
+
"""
|
814 |
+
Return the taxonomy id of a given organism using a reference file.
|
815 |
+
Optionally, return the whole dictionary instead if return_dict is True.
|
816 |
+
|
817 |
+
Args:
|
818 |
+
taxonomy_reference (str): Path to the taxonomy reference file.
|
819 |
+
organism (Optional[str]): The name of the organism to look up.
|
820 |
+
return_dict (bool): Whether to return the entire dictionary.
|
821 |
+
|
822 |
+
Returns:
|
823 |
+
Any: The taxonomy id of the organism or the entire dictionary.
|
824 |
+
"""
|
825 |
+
# Load the organism-to-taxonomy mapping from a Pickle file
|
826 |
+
organism2taxonomy = load_python_object_from_disk(taxonomy_reference)
|
827 |
+
|
828 |
+
if return_dict:
|
829 |
+
return dict(sorted(organism2taxonomy.items()))
|
830 |
+
|
831 |
+
return organism2taxonomy[organism]
|
832 |
+
|
833 |
+
|
834 |
+
def sort_amino2codon_skeleton(amino2codon: Dict[str, Any]) -> Dict[str, Any]:
|
835 |
+
"""
|
836 |
+
Sort the amino2codon dictionary alphabetically by amino acid and by codon name.
|
837 |
+
|
838 |
+
Args:
|
839 |
+
amino2codon (Dict[str, Any]): The amino2codon dictionary to sort.
|
840 |
+
|
841 |
+
Returns:
|
842 |
+
Dict[str, Any]: The sorted amino2codon dictionary.
|
843 |
+
"""
|
844 |
+
# Sort the dictionary by amino acid and then by codon name
|
845 |
+
amino2codon = dict(sorted(amino2codon.items()))
|
846 |
+
amino2codon = {
|
847 |
+
amino: (
|
848 |
+
[codon for codon, _ in sorted(zip(codons, frequencies))],
|
849 |
+
[freq for _, freq in sorted(zip(codons, frequencies))],
|
850 |
+
)
|
851 |
+
for amino, (codons, frequencies) in amino2codon.items()
|
852 |
+
}
|
853 |
+
|
854 |
+
return amino2codon
|
855 |
+
|
856 |
+
|
857 |
+
def load_pkl_from_url(url: str) -> Any:
|
858 |
+
"""
|
859 |
+
Download a Pickle file from a URL and return the loaded object.
|
860 |
+
|
861 |
+
Args:
|
862 |
+
url (str): The URL to download the Pickle file from.
|
863 |
+
|
864 |
+
Returns:
|
865 |
+
Any: The loaded Python object from the Pickle file.
|
866 |
+
"""
|
867 |
+
response = requests.get(url)
|
868 |
+
response.raise_for_status() # Ensure the request was successful
|
869 |
+
|
870 |
+
# Load the Pickle object from the response content
|
871 |
+
return pickle.loads(response.content)
|
CodonTransformer/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
"""CodonTransformer package."""
|