Spaces:
Running
Running
Add ColiFormer Streamlit app for Hugging Face Spaces
Browse files- Complete Streamlit application for E. coli codon optimization
- Auto-downloads model from saketh11/ColiFormer
- Auto-downloads reference data from saketh11/ColiFormer-Data
- Comprehensive metrics: CAI, tAI, GC content, codon usage
- Interactive sequence optimization with real-time feedback
- Export capabilities (FASTA, Excel)
- Proper Hugging Face Spaces metadata and documentation
- 6.2% better CAI performance vs base model
- README.md +92 -7
- app.py +1472 -0
- requirements.txt +20 -0
README.md
CHANGED
@@ -1,13 +1,98 @@
|
|
1 |
---
|
2 |
-
title: ColiFormer
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: ColiFormer - E. coli Codon Optimization
|
3 |
+
emoji: π§¬
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.28.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
short_description: Advanced codon optimization for E. coli using fine-tuned transformers
|
12 |
+
tags:
|
13 |
+
- biology
|
14 |
+
- codon-optimization
|
15 |
+
- e-coli
|
16 |
+
- protein-synthesis
|
17 |
+
- bioinformatics
|
18 |
+
- synthetic-biology
|
19 |
+
- transformers
|
20 |
+
- streamlit
|
21 |
---
|
22 |
|
23 |
+
# 𧬠ColiFormer - E. coli Codon Optimization
|
24 |
+
|
25 |
+
**ColiFormer** is a specialized codon optimization tool fine-tuned specifically for *Escherichia coli* sequences, achieving **6.2% better CAI scores** compared to the base CodonTransformer model.
|
26 |
+
|
27 |
+
## π Features
|
28 |
+
|
29 |
+
- **π― E. coli Specialized**: Fine-tuned on 4,300 high-CAI E. coli sequences
|
30 |
+
- **π Advanced Metrics**: CAI, tAI, GC content, and codon frequency analysis
|
31 |
+
- **π€ Auto-Loading**: Automatically downloads model and reference data from Hugging Face
|
32 |
+
- **β‘ Real-time**: Interactive sequence optimization with live metrics
|
33 |
+
- **π¬ Research-Grade**: Based on BigBird Transformer architecture
|
34 |
+
- **π Performance**: Significant improvement over base models for E. coli
|
35 |
+
|
36 |
+
## π Model Performance
|
37 |
+
|
38 |
+
| Metric | Base Model | ColiFormer | Improvement |
|
39 |
+
|--------|------------|------------|-------------|
|
40 |
+
| CAI Score | 0.742 | 0.788 | **+6.2%** |
|
41 |
+
| tAI Score | 0.451 | 0.478 | **+6.0%** |
|
42 |
+
| GC Content | 52.1% | 51.8% | Optimized |
|
43 |
+
|
44 |
+
## π Related Resources
|
45 |
+
|
46 |
+
- **Model**: [saketh11/ColiFormer](https://huggingface.co/saketh11/ColiFormer)
|
47 |
+
- **Dataset**: [saketh11/ColiFormer-Data](https://huggingface.co/datasets/saketh11/ColiFormer-Data)
|
48 |
+
- **Base Model**: [adibvafa/CodonTransformer](https://huggingface.co/adibvafa/CodonTransformer)
|
49 |
+
- **Paper**: [CodonTransformer: The Global Translation of Genetic Code by Transformer](https://www.biorxiv.org/content/10.1101/2023.09.09.556981v1)
|
50 |
+
|
51 |
+
## π‘ How to Use
|
52 |
+
|
53 |
+
1. **Enter your protein sequence** in single-letter amino acid format
|
54 |
+
2. **Select optimization parameters** (temperature, max length, etc.)
|
55 |
+
3. **Click "Optimize Sequence"** to generate the optimized DNA sequence
|
56 |
+
4. **View comprehensive metrics** including CAI, tAI, GC content, and codon usage
|
57 |
+
5. **Download results** as FASTA or Excel files
|
58 |
+
|
59 |
+
## π§ͺ Example
|
60 |
+
|
61 |
+
**Input Protein**: `MKRISTTITTTITITTGNGAG`
|
62 |
+
|
63 |
+
**Optimized DNA**: `ATGAAACGTATTAGT...` (optimized for E. coli expression)
|
64 |
+
|
65 |
+
**Metrics**:
|
66 |
+
- CAI: 0.85 (High)
|
67 |
+
- tAI: 0.52 (Good)
|
68 |
+
- GC Content: 51.2% (Optimal)
|
69 |
+
|
70 |
+
## π¬ Technical Details
|
71 |
+
|
72 |
+
- **Architecture**: BigBird Transformer with 12 layers
|
73 |
+
- **Training**: Adaptive Learning Methods (ALM) enhanced
|
74 |
+
- **Context Length**: Up to 4096 tokens
|
75 |
+
- **Fine-tuning**: 4,300 high-CAI E. coli sequences
|
76 |
+
- **Reference Data**: 50,000+ E. coli gene sequences for metrics
|
77 |
+
|
78 |
+
## π Citation
|
79 |
+
|
80 |
+
If you use ColiFormer in your research, please cite:
|
81 |
+
|
82 |
+
```bibtex
|
83 |
+
@article{codon_transformer_2023,
|
84 |
+
title={CodonTransformer: The Global Translation of Genetic Code by Transformer},
|
85 |
+
author={Adibvafa Fallahpour and Bartosz Grzybowski and Bogdan Gliwa and Bartosz Michalak},
|
86 |
+
journal={bioRxiv},
|
87 |
+
year={2023},
|
88 |
+
doi={10.1101/2023.09.09.556981}
|
89 |
+
}
|
90 |
+
```
|
91 |
+
|
92 |
+
## π License
|
93 |
+
|
94 |
+
This project is licensed under the MIT License.
|
95 |
+
|
96 |
+
---
|
97 |
+
|
98 |
+
**Built with β€οΈ for the synthetic biology community**
|
app.py
ADDED
@@ -0,0 +1,1472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
import plotly.express as px
|
7 |
+
from transformers import AutoTokenizer, BigBirdForMaskedLM
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from datasets import load_dataset
|
10 |
+
import time
|
11 |
+
import threading
|
12 |
+
from typing import Dict, Optional, Tuple
|
13 |
+
import warnings
|
14 |
+
warnings.filterwarnings("ignore")
|
15 |
+
|
16 |
+
# Import CodonTransformer modules
|
17 |
+
import sys
|
18 |
+
import os
|
19 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
20 |
+
|
21 |
+
from CodonTransformer.CodonPrediction import (
|
22 |
+
predict_dna_sequence,
|
23 |
+
load_model
|
24 |
+
)
|
25 |
+
from CodonTransformer.CodonEvaluation import (
|
26 |
+
get_GC_content,
|
27 |
+
calculate_tAI,
|
28 |
+
get_ecoli_tai_weights,
|
29 |
+
scan_for_restriction_sites,
|
30 |
+
count_negative_cis_elements,
|
31 |
+
calculate_homopolymer_runs
|
32 |
+
)
|
33 |
+
from CAI import CAI, relative_adaptiveness
|
34 |
+
from CodonTransformer.CodonUtils import get_organism2id_dict
|
35 |
+
import json
|
36 |
+
|
37 |
+
# Try to import post-processing features
|
38 |
+
try:
|
39 |
+
from CodonTransformer.CodonPostProcessing import (
|
40 |
+
polish_sequence_with_dnachisel,
|
41 |
+
DNACHISEL_AVAILABLE
|
42 |
+
)
|
43 |
+
POST_PROCESSING_AVAILABLE = True
|
44 |
+
except ImportError:
|
45 |
+
POST_PROCESSING_AVAILABLE = False
|
46 |
+
DNACHISEL_AVAILABLE = False
|
47 |
+
|
48 |
+
# Page configuration
|
49 |
+
st.set_page_config(
|
50 |
+
page_title="CodonTransformer GUI",
|
51 |
+
page_icon="π§¬",
|
52 |
+
layout="wide",
|
53 |
+
initial_sidebar_state="expanded"
|
54 |
+
)
|
55 |
+
|
56 |
+
# Initialize session state
|
57 |
+
if 'model' not in st.session_state:
|
58 |
+
st.session_state.model = None
|
59 |
+
if 'tokenizer' not in st.session_state:
|
60 |
+
st.session_state.tokenizer = None
|
61 |
+
if 'device' not in st.session_state:
|
62 |
+
st.session_state.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
63 |
+
if 'optimization_running' not in st.session_state:
|
64 |
+
st.session_state.optimization_running = False
|
65 |
+
if 'results' not in st.session_state:
|
66 |
+
st.session_state.results = None
|
67 |
+
if 'post_processed_results' not in st.session_state:
|
68 |
+
st.session_state.post_processed_results = None
|
69 |
+
if 'cai_weights' not in st.session_state:
|
70 |
+
st.session_state.cai_weights = None
|
71 |
+
if 'tai_weights' not in st.session_state:
|
72 |
+
st.session_state.tai_weights = None
|
73 |
+
|
74 |
+
def get_organism_tai_weights(organism: str) -> Dict[str, float]:
|
75 |
+
"""Get organism-specific tAI weights from pre-calculated data"""
|
76 |
+
try:
|
77 |
+
# Load organism-specific tAI weights
|
78 |
+
weights_file = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'organism_tai_weights.json')
|
79 |
+
with open(weights_file, 'r') as f:
|
80 |
+
all_weights = json.load(f)
|
81 |
+
|
82 |
+
if organism in all_weights:
|
83 |
+
return all_weights[organism]
|
84 |
+
else:
|
85 |
+
# Fallback to E. coli if organism not found
|
86 |
+
st.warning(f"tAI weights for {organism} not found, using E. coli weights")
|
87 |
+
return all_weights.get("Escherichia coli general", get_ecoli_tai_weights())
|
88 |
+
except Exception as e:
|
89 |
+
st.error(f"Error loading organism-specific tAI weights: {e}")
|
90 |
+
return get_ecoli_tai_weights()
|
91 |
+
|
92 |
+
def load_model_and_tokenizer():
|
93 |
+
"""Load the model and tokenizer with progress tracking"""
|
94 |
+
if st.session_state.model is None or st.session_state.tokenizer is None:
|
95 |
+
with st.spinner("Loading CodonTransformer model... This may take a few minutes."):
|
96 |
+
progress_bar = st.progress(0)
|
97 |
+
status_text = st.empty()
|
98 |
+
|
99 |
+
status_text.text("Loading tokenizer...")
|
100 |
+
progress_bar.progress(25)
|
101 |
+
st.session_state.tokenizer = AutoTokenizer.from_pretrained("adibvafa/CodonTransformer")
|
102 |
+
|
103 |
+
status_text.text("Loading fine-tuned model from Hugging Face...")
|
104 |
+
progress_bar.progress(50)
|
105 |
+
# Try to download and load fine-tuned model from Hugging Face
|
106 |
+
try:
|
107 |
+
# Download the checkpoint file from Hugging Face
|
108 |
+
from huggingface_hub import hf_hub_download
|
109 |
+
|
110 |
+
status_text.text("β¬οΈ Downloading model from saketh11/ColiFormer...")
|
111 |
+
model_path = hf_hub_download(
|
112 |
+
repo_id="saketh11/ColiFormer",
|
113 |
+
filename="balanced_alm_finetune.ckpt",
|
114 |
+
cache_dir="./hf_cache"
|
115 |
+
)
|
116 |
+
|
117 |
+
status_text.text("π Loading downloaded model...")
|
118 |
+
st.session_state.model = load_model(
|
119 |
+
model_path=model_path,
|
120 |
+
device=st.session_state.device,
|
121 |
+
attention_type="original_full"
|
122 |
+
)
|
123 |
+
status_text.text("β
Fine-tuned model loaded from Hugging Face (6.2% better CAI)")
|
124 |
+
st.session_state.model_type = "fine_tuned_hf"
|
125 |
+
except Exception as e:
|
126 |
+
status_text.text(f"β οΈ Failed to load from Hugging Face: {str(e)[:50]}...")
|
127 |
+
status_text.text("Loading base model as fallback...")
|
128 |
+
st.session_state.model = BigBirdForMaskedLM.from_pretrained("adibvafa/CodonTransformer")
|
129 |
+
st.session_state.model = st.session_state.model.to(st.session_state.device)
|
130 |
+
st.session_state.model_type = "base"
|
131 |
+
|
132 |
+
progress_bar.progress(100)
|
133 |
+
time.sleep(0.5)
|
134 |
+
|
135 |
+
status_text.empty()
|
136 |
+
progress_bar.empty()
|
137 |
+
|
138 |
+
@st.cache_data
|
139 |
+
def download_reference_data():
|
140 |
+
"""Download and cache reference data from Hugging Face"""
|
141 |
+
try:
|
142 |
+
# Download the processed genes file from Hugging Face
|
143 |
+
file_path = hf_hub_download(
|
144 |
+
repo_id="saketh11/ColiFormer-Data",
|
145 |
+
filename="ecoli_processed_genes.csv",
|
146 |
+
repo_type="dataset"
|
147 |
+
)
|
148 |
+
df = pd.read_csv(file_path)
|
149 |
+
return df['dna_sequence'].tolist()
|
150 |
+
except Exception as e:
|
151 |
+
st.warning(f"Could not download reference data from Hugging Face: {e}")
|
152 |
+
# Fallback to minimal sequences
|
153 |
+
return [
|
154 |
+
"ATGGCGAAAGCGCTGTATCGCGAAAGCGCTGTATCGCGAAAGCGCTGTATCGC",
|
155 |
+
"ATGAAATTTATTTATTATTATAAATTTATTTATTATTATAAATTTATTTAT",
|
156 |
+
"ATGGGTCGTCGTCGTCGTGGTCGTCGTCGTCGTGGTCGTCGTCGTCGTGGT"
|
157 |
+
]
|
158 |
+
|
159 |
+
@st.cache_data
|
160 |
+
def download_tai_weights():
|
161 |
+
"""Download and cache tAI weights from Hugging Face"""
|
162 |
+
try:
|
163 |
+
# Download the tAI weights file from Hugging Face
|
164 |
+
file_path = hf_hub_download(
|
165 |
+
repo_id="saketh11/ColiFormer-Data",
|
166 |
+
filename="organism_tai_weights.json",
|
167 |
+
repo_type="dataset"
|
168 |
+
)
|
169 |
+
with open(file_path, 'r') as f:
|
170 |
+
all_weights = json.load(f)
|
171 |
+
return all_weights.get("Escherichia coli general", get_ecoli_tai_weights())
|
172 |
+
except Exception as e:
|
173 |
+
st.warning(f"Could not download tAI weights from Hugging Face: {e}")
|
174 |
+
return get_ecoli_tai_weights()
|
175 |
+
|
176 |
+
def load_reference_data(organism: str = "Escherichia coli general"):
|
177 |
+
"""Load reference sequences and tAI weights for E. coli"""
|
178 |
+
if 'cai_weights' not in st.session_state or st.session_state['cai_weights'] is None:
|
179 |
+
try:
|
180 |
+
# Download reference sequences from Hugging Face
|
181 |
+
with st.spinner("π₯ Downloading E. coli reference sequences from Hugging Face..."):
|
182 |
+
ref_sequences = download_reference_data()
|
183 |
+
st.session_state['cai_weights'] = relative_adaptiveness(sequences=ref_sequences)
|
184 |
+
if len(ref_sequences) > 100: # If we got the full dataset
|
185 |
+
st.success(f"β
Downloaded {len(ref_sequences):,} E. coli reference sequences for CAI calculation")
|
186 |
+
else:
|
187 |
+
st.info(f"β οΈ Using {len(ref_sequences)} minimal reference sequences (full dataset unavailable)")
|
188 |
+
except Exception as e:
|
189 |
+
st.error(f"Error loading E. coli reference data: {e}")
|
190 |
+
st.session_state['cai_weights'] = {}
|
191 |
+
# tAI weights (E. coli only)
|
192 |
+
if 'tai_weights' not in st.session_state or st.session_state['tai_weights'] is None:
|
193 |
+
try:
|
194 |
+
with st.spinner("π₯ Downloading E. coli tAI weights from Hugging Face..."):
|
195 |
+
st.session_state['tai_weights'] = download_tai_weights()
|
196 |
+
st.success("β
Downloaded E. coli tAI weights")
|
197 |
+
except Exception as e:
|
198 |
+
st.error(f"Error loading E. coli tAI weights: {e}")
|
199 |
+
st.session_state['tai_weights'] = {}
|
200 |
+
|
201 |
+
def validate_sequence(sequence: str) -> Tuple[bool, str, str, str]:
|
202 |
+
"""Validate sequence and return status, message, sequence type, and possibly fixed sequence"""
|
203 |
+
if not sequence:
|
204 |
+
return False, "Sequence cannot be empty", "unknown", sequence
|
205 |
+
|
206 |
+
# Remove whitespace and convert to uppercase
|
207 |
+
sequence = sequence.strip().upper()
|
208 |
+
|
209 |
+
# Check if it's a DNA sequence
|
210 |
+
dna_chars = set("ATGC")
|
211 |
+
protein_chars = set("ACDEFGHIKLMNPQRSTVWY*_")
|
212 |
+
|
213 |
+
sequence_chars = set(sequence)
|
214 |
+
|
215 |
+
# If all characters are DNA nucleotides, treat as DNA
|
216 |
+
if sequence_chars.issubset(dna_chars):
|
217 |
+
if len(sequence) < 3:
|
218 |
+
return False, "DNA sequence must be at least 3 nucleotides long", "dna", sequence
|
219 |
+
|
220 |
+
# Auto-fix DNA sequences not divisible by 3
|
221 |
+
if len(sequence) % 3 != 0:
|
222 |
+
remainder = len(sequence) % 3
|
223 |
+
fixed_sequence = sequence[:-remainder]
|
224 |
+
message = f"Valid DNA sequence (auto-fixed: removed {remainder} nucleotides from end to make divisible by 3)"
|
225 |
+
else:
|
226 |
+
fixed_sequence = sequence
|
227 |
+
message = "Valid DNA sequence"
|
228 |
+
|
229 |
+
return True, message, "dna", fixed_sequence
|
230 |
+
|
231 |
+
# If contains protein-specific amino acids, treat as protein
|
232 |
+
elif sequence_chars.issubset(protein_chars):
|
233 |
+
if len(sequence) < 3:
|
234 |
+
return False, "Protein sequence must be at least 3 amino acids long", "protein", sequence
|
235 |
+
return True, "Valid protein sequence", "protein", sequence
|
236 |
+
|
237 |
+
# Invalid characters
|
238 |
+
else:
|
239 |
+
invalid_chars = sequence_chars - (dna_chars | protein_chars)
|
240 |
+
return False, f"Invalid characters found: {', '.join(invalid_chars)}", "unknown", sequence
|
241 |
+
|
242 |
+
def calculate_input_metrics(sequence: str, organism: str, sequence_type: str) -> Dict:
|
243 |
+
"""Calculate metrics for the input sequence using E. coli reference only"""
|
244 |
+
# Load reference data (E. coli only)
|
245 |
+
load_reference_data()
|
246 |
+
if sequence_type == "dna":
|
247 |
+
dna_sequence = sequence.upper()
|
248 |
+
metrics = {
|
249 |
+
'length': len(dna_sequence) // 3,
|
250 |
+
'gc_content': get_GC_content(dna_sequence),
|
251 |
+
'baseline_dna': dna_sequence,
|
252 |
+
'sequence_type': 'dna'
|
253 |
+
}
|
254 |
+
try:
|
255 |
+
if 'cai_weights' in st.session_state and st.session_state['cai_weights']:
|
256 |
+
metrics['cai'] = CAI(dna_sequence, weights=st.session_state['cai_weights'])
|
257 |
+
else:
|
258 |
+
metrics['cai'] = None
|
259 |
+
except:
|
260 |
+
metrics['cai'] = None
|
261 |
+
try:
|
262 |
+
if 'tai_weights' in st.session_state and st.session_state['tai_weights']:
|
263 |
+
metrics['tai'] = calculate_tAI(dna_sequence, st.session_state['tai_weights'])
|
264 |
+
else:
|
265 |
+
metrics['tai'] = None
|
266 |
+
except:
|
267 |
+
metrics['tai'] = None
|
268 |
+
else:
|
269 |
+
most_frequent_codons = {
|
270 |
+
'A': 'GCG', 'C': 'TGC', 'D': 'GAT', 'E': 'GAA', 'F': 'TTT',
|
271 |
+
'G': 'GGC', 'H': 'CAT', 'I': 'ATT', 'K': 'AAA', 'L': 'CTG',
|
272 |
+
'M': 'ATG', 'N': 'AAC', 'P': 'CCG', 'Q': 'CAG', 'R': 'CGC',
|
273 |
+
'S': 'TCG', 'T': 'ACG', 'V': 'GTG', 'W': 'TGG', 'Y': 'TAT',
|
274 |
+
'*': 'TAA', '_': 'TAA'
|
275 |
+
}
|
276 |
+
baseline_dna = ''.join([most_frequent_codons.get(aa, 'NNN') for aa in sequence])
|
277 |
+
metrics = {
|
278 |
+
'length': len(sequence),
|
279 |
+
'gc_content': get_GC_content(baseline_dna),
|
280 |
+
'baseline_dna': baseline_dna,
|
281 |
+
'sequence_type': 'protein'
|
282 |
+
}
|
283 |
+
try:
|
284 |
+
if 'cai_weights' in st.session_state and st.session_state['cai_weights']:
|
285 |
+
metrics['cai'] = CAI(baseline_dna, weights=st.session_state['cai_weights'])
|
286 |
+
else:
|
287 |
+
metrics['cai'] = None
|
288 |
+
except:
|
289 |
+
metrics['cai'] = None
|
290 |
+
try:
|
291 |
+
if 'tai_weights' in st.session_state and st.session_state['tai_weights']:
|
292 |
+
metrics['tai'] = calculate_tAI(baseline_dna, st.session_state['tai_weights'])
|
293 |
+
else:
|
294 |
+
metrics['tai'] = None
|
295 |
+
except:
|
296 |
+
metrics['tai'] = None
|
297 |
+
try:
|
298 |
+
analysis_dna = metrics['baseline_dna']
|
299 |
+
metrics['restriction_sites'] = len(scan_for_restriction_sites(analysis_dna))
|
300 |
+
metrics['negative_cis_elements'] = count_negative_cis_elements(analysis_dna)
|
301 |
+
metrics['homopolymer_runs'] = calculate_homopolymer_runs(analysis_dna)
|
302 |
+
except:
|
303 |
+
metrics['restriction_sites'] = 0
|
304 |
+
metrics['negative_cis_elements'] = 0
|
305 |
+
metrics['homopolymer_runs'] = 0
|
306 |
+
return metrics
|
307 |
+
|
308 |
+
def translate_dna_to_protein(dna_sequence: str) -> str:
|
309 |
+
"""Translate DNA sequence to protein sequence"""
|
310 |
+
codon_table = {
|
311 |
+
'TTT': 'F', 'TTC': 'F', 'TTA': 'L', 'TTG': 'L',
|
312 |
+
'TCT': 'S', 'TCC': 'S', 'TCA': 'S', 'TCG': 'S',
|
313 |
+
'TAT': 'Y', 'TAC': 'Y', 'TAA': '*', 'TAG': '*',
|
314 |
+
'TGT': 'C', 'TGC': 'C', 'TGA': '*', 'TGG': 'W',
|
315 |
+
'CTT': 'L', 'CTC': 'L', 'CTA': 'L', 'CTG': 'L',
|
316 |
+
'CCT': 'P', 'CCC': 'P', 'CCA': 'P', 'CCG': 'P',
|
317 |
+
'CAT': 'H', 'CAC': 'H', 'CAA': 'Q', 'CAG': 'Q',
|
318 |
+
'CGT': 'R', 'CGC': 'R', 'CGA': 'R', 'CGG': 'R',
|
319 |
+
'ATT': 'I', 'ATC': 'I', 'ATA': 'I', 'ATG': 'M',
|
320 |
+
'ACT': 'T', 'ACC': 'T', 'ACA': 'T', 'ACG': 'T',
|
321 |
+
'AAT': 'N', 'AAC': 'N', 'AAA': 'K', 'AAG': 'K',
|
322 |
+
'AGT': 'S', 'AGC': 'S', 'AGA': 'R', 'AGG': 'R',
|
323 |
+
'GTT': 'V', 'GTC': 'V', 'GTA': 'V', 'GTG': 'V',
|
324 |
+
'GCT': 'A', 'GCC': 'A', 'GCA': 'A', 'GCG': 'A',
|
325 |
+
'GAT': 'D', 'GAC': 'D', 'GAA': 'E', 'GAG': 'E',
|
326 |
+
'GGT': 'G', 'GGC': 'G', 'GGA': 'G', 'GGG': 'G'
|
327 |
+
}
|
328 |
+
|
329 |
+
protein = ""
|
330 |
+
for i in range(0, len(dna_sequence), 3):
|
331 |
+
codon = dna_sequence[i:i+3].upper()
|
332 |
+
if len(codon) == 3:
|
333 |
+
aa = codon_table.get(codon, 'X')
|
334 |
+
if aa == '*': # Stop codon
|
335 |
+
break
|
336 |
+
protein += aa
|
337 |
+
|
338 |
+
return protein
|
339 |
+
|
340 |
+
def create_gc_content_plot(sequence: str, window_size: int = 50) -> go.Figure:
|
341 |
+
"""Create a sliding window GC content plot"""
|
342 |
+
if len(sequence) < window_size:
|
343 |
+
window_size = len(sequence) // 3
|
344 |
+
|
345 |
+
positions = []
|
346 |
+
gc_values = []
|
347 |
+
|
348 |
+
for i in range(0, len(sequence) - window_size + 1, 3): # Step by codons
|
349 |
+
window = sequence[i:i + window_size]
|
350 |
+
gc_content = get_GC_content(window)
|
351 |
+
positions.append(i // 3) # Position in codons
|
352 |
+
gc_values.append(gc_content)
|
353 |
+
|
354 |
+
fig = go.Figure()
|
355 |
+
fig.add_trace(go.Scatter(
|
356 |
+
x=positions,
|
357 |
+
y=gc_values,
|
358 |
+
mode='lines',
|
359 |
+
name='GC Content',
|
360 |
+
line=dict(color='blue', width=2)
|
361 |
+
))
|
362 |
+
|
363 |
+
# Add target range
|
364 |
+
fig.add_hline(y=45, line_dash="dash", line_color="red",
|
365 |
+
annotation_text="Min Target (45%)")
|
366 |
+
fig.add_hline(y=55, line_dash="dash", line_color="red",
|
367 |
+
annotation_text="Max Target (55%)")
|
368 |
+
|
369 |
+
fig.update_layout(
|
370 |
+
title=f'GC Content (sliding window: {window_size} bp)',
|
371 |
+
xaxis_title='Position (codons)',
|
372 |
+
yaxis_title='GC Content (%)',
|
373 |
+
height=300
|
374 |
+
)
|
375 |
+
|
376 |
+
return fig
|
377 |
+
|
378 |
+
def create_gc_comparison_chart(before_metrics: Dict, after_metrics: Dict) -> go.Figure:
|
379 |
+
"""Create a comparison chart for GC Content"""
|
380 |
+
fig = go.Figure()
|
381 |
+
fig.add_trace(go.Bar(
|
382 |
+
name='Before Optimization',
|
383 |
+
x=['GC Content (%)'],
|
384 |
+
y=[before_metrics.get('gc_content', 0)],
|
385 |
+
marker_color='lightblue',
|
386 |
+
text=[f"{before_metrics.get('gc_content', 0):.1f}%"],
|
387 |
+
textposition='auto'
|
388 |
+
))
|
389 |
+
fig.add_trace(go.Bar(
|
390 |
+
name='After Optimization',
|
391 |
+
x=['GC Content (%)'],
|
392 |
+
y=[after_metrics.get('gc_content', 0)],
|
393 |
+
marker_color='darkblue',
|
394 |
+
text=[f"{after_metrics.get('gc_content', 0):.1f}%"],
|
395 |
+
textposition='auto'
|
396 |
+
))
|
397 |
+
fig.update_layout(
|
398 |
+
title='GC Content Comparison: Before vs After',
|
399 |
+
xaxis_title='Metric',
|
400 |
+
yaxis_title='Value (%)',
|
401 |
+
barmode='group',
|
402 |
+
height=300
|
403 |
+
)
|
404 |
+
return fig
|
405 |
+
|
406 |
+
def create_expression_comparison_chart(before_metrics: Dict, after_metrics: Dict) -> go.Figure:
|
407 |
+
"""Create a comparison chart for expression metrics (CAI, tAI)"""
|
408 |
+
metrics_names = ['CAI', 'tAI']
|
409 |
+
before_values = [
|
410 |
+
before_metrics.get('cai', 0) if before_metrics.get('cai') else 0,
|
411 |
+
before_metrics.get('tai', 0) if before_metrics.get('tai') else 0
|
412 |
+
]
|
413 |
+
after_values = [
|
414 |
+
after_metrics.get('cai', 0) if after_metrics.get('cai') else 0,
|
415 |
+
after_metrics.get('tai', 0) if after_metrics.get('tai') else 0
|
416 |
+
]
|
417 |
+
|
418 |
+
fig = go.Figure()
|
419 |
+
fig.add_trace(go.Bar(
|
420 |
+
name='Before Optimization',
|
421 |
+
x=metrics_names,
|
422 |
+
y=before_values,
|
423 |
+
marker_color='lightblue',
|
424 |
+
text=[f"{v:.3f}" for v in before_values],
|
425 |
+
textposition='auto'
|
426 |
+
))
|
427 |
+
fig.add_trace(go.Bar(
|
428 |
+
name='After Optimization',
|
429 |
+
x=metrics_names,
|
430 |
+
y=after_values,
|
431 |
+
marker_color='darkblue',
|
432 |
+
text=[f"{v:.3f}" for v in after_values],
|
433 |
+
textposition='auto'
|
434 |
+
))
|
435 |
+
fig.update_layout(
|
436 |
+
title='Expression Metrics Comparison: Before vs After',
|
437 |
+
xaxis_title='Metric',
|
438 |
+
yaxis_title='Value',
|
439 |
+
barmode='group',
|
440 |
+
height=300
|
441 |
+
)
|
442 |
+
return fig
|
443 |
+
|
444 |
+
def smart_codon_replacement(dna_sequence: str, target_gc_min: float = 0.45, target_gc_max: float = 0.55, max_iterations: int = 100) -> str:
|
445 |
+
"""Smart codon replacement to optimize GC content while maximizing CAI"""
|
446 |
+
|
447 |
+
# Codon alternatives with their GC content
|
448 |
+
codon_alternatives = {
|
449 |
+
# Serine: high GC options
|
450 |
+
'TCT': ['TCG', 'TCC', 'TCA', 'AGT', 'AGC'], # 33% -> 67%, 67%, 33%, 33%, 67%
|
451 |
+
'TCA': ['TCG', 'TCC', 'TCT', 'AGT', 'AGC'],
|
452 |
+
'AGT': ['TCG', 'TCC', 'TCT', 'TCA', 'AGC'],
|
453 |
+
|
454 |
+
# Leucine: various GC options
|
455 |
+
'TTA': ['TTG', 'CTT', 'CTC', 'CTA', 'CTG'], # 0% -> 33%, 33%, 67%, 33%, 67%
|
456 |
+
'TTG': ['TTA', 'CTT', 'CTC', 'CTA', 'CTG'],
|
457 |
+
'CTT': ['CTG', 'CTC', 'TTA', 'TTG', 'CTA'],
|
458 |
+
'CTA': ['CTG', 'CTC', 'CTT', 'TTA', 'TTG'],
|
459 |
+
|
460 |
+
# Arginine: various GC options
|
461 |
+
'AGA': ['CGT', 'CGC', 'CGA', 'CGG', 'AGG'], # 33% -> 67%, 100%, 67%, 100%, 67%
|
462 |
+
'AGG': ['CGT', 'CGC', 'CGA', 'CGG', 'AGA'],
|
463 |
+
'CGT': ['CGC', 'CGG', 'CGA', 'AGA', 'AGG'],
|
464 |
+
'CGA': ['CGC', 'CGG', 'CGT', 'AGA', 'AGG'],
|
465 |
+
|
466 |
+
# Proline
|
467 |
+
'CCT': ['CCG', 'CCC', 'CCA'], # 67% -> 100%, 100%, 67%
|
468 |
+
'CCA': ['CCG', 'CCC', 'CCT'],
|
469 |
+
|
470 |
+
# Threonine
|
471 |
+
'ACT': ['ACG', 'ACC', 'ACA'], # 33% -> 67%, 67%, 33%
|
472 |
+
'ACA': ['ACG', 'ACC', 'ACT'],
|
473 |
+
|
474 |
+
# Alanine
|
475 |
+
'GCT': ['GCG', 'GCC', 'GCA'], # 67% -> 100%, 100%, 67%
|
476 |
+
'GCA': ['GCG', 'GCC', 'GCT'],
|
477 |
+
|
478 |
+
# Glycine
|
479 |
+
'GGT': ['GGG', 'GGC', 'GGA'], # 67% -> 100%, 100%, 67%
|
480 |
+
'GGA': ['GGG', 'GGC', 'GGT'],
|
481 |
+
|
482 |
+
# Valine
|
483 |
+
'GTT': ['GTG', 'GTC', 'GTA'], # 67% -> 100%, 100%, 67%
|
484 |
+
'GTA': ['GTG', 'GTC', 'GTT'],
|
485 |
+
}
|
486 |
+
|
487 |
+
def get_codon_gc(codon):
|
488 |
+
return (codon.count('G') + codon.count('C')) / 3.0
|
489 |
+
|
490 |
+
current_sequence = dna_sequence.upper()
|
491 |
+
current_gc = get_GC_content(current_sequence)
|
492 |
+
|
493 |
+
if target_gc_min <= current_gc <= target_gc_max:
|
494 |
+
return current_sequence
|
495 |
+
|
496 |
+
codons = [current_sequence[i:i+3] for i in range(0, len(current_sequence), 3)]
|
497 |
+
|
498 |
+
for iteration in range(max_iterations):
|
499 |
+
current_gc = get_GC_content(''.join(codons))
|
500 |
+
|
501 |
+
if target_gc_min <= current_gc <= target_gc_max:
|
502 |
+
break
|
503 |
+
|
504 |
+
# Find best codon to replace
|
505 |
+
best_improvement = 0
|
506 |
+
best_pos = -1
|
507 |
+
best_replacement = None
|
508 |
+
|
509 |
+
for pos, codon in enumerate(codons):
|
510 |
+
if codon in codon_alternatives:
|
511 |
+
for alt_codon in codon_alternatives[codon]:
|
512 |
+
# Calculate GC change
|
513 |
+
old_gc_contrib = get_codon_gc(codon)
|
514 |
+
new_gc_contrib = get_codon_gc(alt_codon)
|
515 |
+
gc_change = new_gc_contrib - old_gc_contrib
|
516 |
+
|
517 |
+
# Check if this change moves us toward target
|
518 |
+
if current_gc < target_gc_min and gc_change > best_improvement:
|
519 |
+
best_improvement = gc_change
|
520 |
+
best_pos = pos
|
521 |
+
best_replacement = alt_codon
|
522 |
+
elif current_gc > target_gc_max and gc_change < best_improvement:
|
523 |
+
best_improvement = abs(gc_change)
|
524 |
+
best_pos = pos
|
525 |
+
best_replacement = alt_codon
|
526 |
+
|
527 |
+
if best_pos >= 0:
|
528 |
+
if isinstance(best_replacement, str):
|
529 |
+
codons[best_pos] = best_replacement
|
530 |
+
else:
|
531 |
+
break # No more improvements possible
|
532 |
+
|
533 |
+
return ''.join(codons)
|
534 |
+
|
535 |
+
def run_optimization(protein: str, organism: str, use_post_processing: bool = False):
|
536 |
+
"""Run the optimization using the exact method from run_full_comparison.py with auto GC correction"""
|
537 |
+
st.session_state.optimization_running = True
|
538 |
+
st.session_state.post_processed_results = None
|
539 |
+
|
540 |
+
try:
|
541 |
+
# Use the exact same method that achieved best results in evaluation
|
542 |
+
result = predict_dna_sequence(
|
543 |
+
protein=protein,
|
544 |
+
organism=organism,
|
545 |
+
device=st.session_state.device,
|
546 |
+
model=st.session_state.model,
|
547 |
+
deterministic=True,
|
548 |
+
match_protein=True,
|
549 |
+
)
|
550 |
+
|
551 |
+
# Check GC content and auto-correct if out of optimal range
|
552 |
+
_res = result[0] if isinstance(result, list) else result
|
553 |
+
initial_gc = get_GC_content(_res.predicted_dna)
|
554 |
+
|
555 |
+
if initial_gc < 45.0 or initial_gc > 55.0:
|
556 |
+
# Auto-correct GC content silently
|
557 |
+
optimized_dna = smart_codon_replacement(_res.predicted_dna, 0.45, 0.55)
|
558 |
+
smart_gc = get_GC_content(optimized_dna)
|
559 |
+
|
560 |
+
if 45.0 <= smart_gc <= 55.0:
|
561 |
+
from CodonTransformer.CodonUtils import DNASequencePrediction
|
562 |
+
result = DNASequencePrediction(
|
563 |
+
organism=_res.organism,
|
564 |
+
protein=_res.protein,
|
565 |
+
processed_input=_res.processed_input,
|
566 |
+
predicted_dna=optimized_dna
|
567 |
+
)
|
568 |
+
else:
|
569 |
+
# Fall back to constrained beam search silently
|
570 |
+
try:
|
571 |
+
result = predict_dna_sequence(
|
572 |
+
protein=protein,
|
573 |
+
organism=organism,
|
574 |
+
device=st.session_state.device,
|
575 |
+
model=st.session_state.model,
|
576 |
+
deterministic=True,
|
577 |
+
match_protein=True,
|
578 |
+
use_constrained_search=True,
|
579 |
+
gc_bounds=(0.45, 0.55),
|
580 |
+
beam_size=20
|
581 |
+
)
|
582 |
+
_res2 = result[0] if isinstance(result, list) else result
|
583 |
+
final_gc = get_GC_content(_res2.predicted_dna)
|
584 |
+
except Exception as e:
|
585 |
+
# If constrained search fails, use smart replacement result anyway
|
586 |
+
from CodonTransformer.CodonUtils import DNASequencePrediction
|
587 |
+
result = DNASequencePrediction(
|
588 |
+
organism=_res.organism,
|
589 |
+
protein=_res.protein,
|
590 |
+
processed_input=_res.processed_input,
|
591 |
+
predicted_dna=optimized_dna
|
592 |
+
)
|
593 |
+
|
594 |
+
st.session_state.results = result
|
595 |
+
|
596 |
+
# Post-processing if enabled
|
597 |
+
if use_post_processing and POST_PROCESSING_AVAILABLE and result:
|
598 |
+
try:
|
599 |
+
_res = result[0] if isinstance(result, list) else result
|
600 |
+
polished_sequence = polish_sequence_with_dnachisel(
|
601 |
+
dna_sequence=_res.predicted_dna,
|
602 |
+
protein_sequence=protein,
|
603 |
+
gc_bounds=(45.0, 55.0),
|
604 |
+
cai_species=organism.lower().replace(' ', '_'),
|
605 |
+
avoid_homopolymers_length=6
|
606 |
+
)
|
607 |
+
|
608 |
+
# Create enhanced result object
|
609 |
+
from CodonTransformer.CodonUtils import DNASequencePrediction
|
610 |
+
st.session_state.post_processed_results = DNASequencePrediction(
|
611 |
+
organism=result.organism,
|
612 |
+
protein=result.protein,
|
613 |
+
processed_input=result.processed_input,
|
614 |
+
predicted_dna=polished_sequence
|
615 |
+
)
|
616 |
+
except Exception as e:
|
617 |
+
st.session_state.post_processed_results = f"Post-processing error: {str(e)}"
|
618 |
+
|
619 |
+
except Exception as e:
|
620 |
+
st.session_state.results = f"Error: {str(e)}"
|
621 |
+
|
622 |
+
finally:
|
623 |
+
st.session_state.optimization_running = False
|
624 |
+
|
625 |
+
def main():
|
626 |
+
st.title("𧬠ColiFormer")
|
627 |
+
st.markdown("**State-of-the-art E. coli codon optimization for publication-quality research**")
|
628 |
+
|
629 |
+
# Remove the performance highlights expander (details/summary block)
|
630 |
+
# (No expander here anymore)
|
631 |
+
|
632 |
+
# Load model
|
633 |
+
load_model_and_tokenizer()
|
634 |
+
|
635 |
+
# Create the main tabbed interface
|
636 |
+
tab1, tab2, tab3, tab4 = st.tabs(["𧬠Single Optimize", "π Batch Process", "π Comparative Analysis", "βοΈ Advanced Settings"])
|
637 |
+
|
638 |
+
with tab1:
|
639 |
+
single_sequence_optimization()
|
640 |
+
|
641 |
+
with tab2:
|
642 |
+
batch_processing_interface()
|
643 |
+
|
644 |
+
with tab3:
|
645 |
+
comparative_analysis_interface()
|
646 |
+
|
647 |
+
with tab4:
|
648 |
+
advanced_settings_interface()
|
649 |
+
|
650 |
+
def single_sequence_optimization():
|
651 |
+
"""Single sequence optimization interface - enhanced from original functionality"""
|
652 |
+
# Sidebar configuration
|
653 |
+
st.sidebar.header("π§ Configuration")
|
654 |
+
organism_options = [
|
655 |
+
"Escherichia coli general",
|
656 |
+
"Saccharomyces cerevisiae",
|
657 |
+
"Homo sapiens",
|
658 |
+
"Bacillus subtilis",
|
659 |
+
"Pichia pastoris"
|
660 |
+
]
|
661 |
+
organism = st.sidebar.selectbox("Select Target Organism", organism_options)
|
662 |
+
load_reference_data(organism)
|
663 |
+
with st.sidebar.expander("π§ Advanced Optimization Settings"):
|
664 |
+
st.markdown("**Model Parameters**")
|
665 |
+
use_deterministic = st.checkbox("Deterministic Mode", value=True, help="Use deterministic decoding for reproducible results")
|
666 |
+
match_protein = st.checkbox("Match Protein Validation", value=True, help="Ensure DNA translates back to exact protein")
|
667 |
+
st.markdown("**GC Content Control**")
|
668 |
+
gc_target_min = st.slider("GC Target Min (%)", 30, 70, 45, help="Minimum GC content target")
|
669 |
+
gc_target_max = st.slider("GC Target Max (%)", 30, 70, 55, help="Maximum GC content target")
|
670 |
+
st.markdown("**Quality Constraints**")
|
671 |
+
avoid_restriction_sites = st.multiselect(
|
672 |
+
"Avoid Restriction Sites",
|
673 |
+
["EcoRI", "BamHI", "HindIII", "XhoI", "NotI"],
|
674 |
+
default=["EcoRI", "BamHI"]
|
675 |
+
)
|
676 |
+
st.sidebar.subheader("π¬ Post-Processing")
|
677 |
+
use_post_processing = st.sidebar.checkbox(
|
678 |
+
"Enable DNAChisel Post-Processing",
|
679 |
+
value=False,
|
680 |
+
disabled=not POST_PROCESSING_AVAILABLE,
|
681 |
+
help="Polish sequences to remove restriction sites, homopolymers, and synthesis issues"
|
682 |
+
)
|
683 |
+
if not POST_PROCESSING_AVAILABLE:
|
684 |
+
st.sidebar.warning("β οΈ DNAChisel not available. Install with: pip install dnachisel")
|
685 |
+
|
686 |
+
# Dataset Information
|
687 |
+
st.sidebar.markdown("---")
|
688 |
+
st.sidebar.markdown("### π Dataset Information")
|
689 |
+
st.sidebar.markdown("""
|
690 |
+
- **Dataset**: [ColiFormer-Data](https://huggingface.co/datasets/saketh11/ColiFormer-Data)
|
691 |
+
- **Training**: 4,300 high-CAI E. coli sequences
|
692 |
+
- **Reference**: 50,000+ E. coli gene sequences
|
693 |
+
- **Auto-download**: CAI weights & tAI coefficients
|
694 |
+
""")
|
695 |
+
|
696 |
+
# Model Information
|
697 |
+
st.sidebar.markdown("### π€ Model Information")
|
698 |
+
st.sidebar.markdown("""
|
699 |
+
- **Model**: [ColiFormer](https://huggingface.co/saketh11/ColiFormer)
|
700 |
+
- **Improvement**: +6.2% CAI vs base model
|
701 |
+
- **Architecture**: BigBird Transformer + ALM
|
702 |
+
- **Auto-download**: From Hugging Face Hub
|
703 |
+
""")
|
704 |
+
col1, col2 = st.columns([1, 1])
|
705 |
+
with col1:
|
706 |
+
st.header("𧬠Input Sequence")
|
707 |
+
sequence_input = st.text_area(
|
708 |
+
"Enter Protein or DNA Sequence",
|
709 |
+
height=150,
|
710 |
+
placeholder="Enter protein sequence (MKWVT...) or DNA sequence (ATGGCG...)\n\nExample protein: MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTE"
|
711 |
+
)
|
712 |
+
analyze_btn = st.button("Analyze Sequence", type="primary")
|
713 |
+
if sequence_input and analyze_btn:
|
714 |
+
is_valid, message, sequence_type, fixed_sequence = validate_sequence(sequence_input)
|
715 |
+
if is_valid:
|
716 |
+
st.success(f"β
{message}")
|
717 |
+
# Store in session state for use by Optimize Sequence
|
718 |
+
st.session_state.sequence_clean = fixed_sequence
|
719 |
+
st.session_state.sequence_type = sequence_type
|
720 |
+
st.session_state.input_metrics = calculate_input_metrics(fixed_sequence, organism, sequence_type)
|
721 |
+
st.session_state.organism = organism
|
722 |
+
else:
|
723 |
+
st.error(f"β {message}")
|
724 |
+
if "Invalid characters" in message:
|
725 |
+
st.info("π‘ **Suggestion:** Remove spaces, numbers, and special characters. Use only standard amino acid letters (A-Z) for proteins or nucleotides (ATGC) for DNA.")
|
726 |
+
elif "too long" in message:
|
727 |
+
st.info("π‘ **Suggestion:** Consider breaking long sequences into smaller segments for optimization.")
|
728 |
+
elif "too short" in message:
|
729 |
+
st.info("π‘ **Suggestion:** Minimum length is 3 characters. Ensure your sequence is complete.")
|
730 |
+
# Clear session state if invalid
|
731 |
+
st.session_state.sequence_clean = None
|
732 |
+
st.session_state.sequence_type = None
|
733 |
+
st.session_state.input_metrics = None
|
734 |
+
st.session_state.organism = None
|
735 |
+
elif not sequence_input:
|
736 |
+
st.session_state.sequence_clean = None
|
737 |
+
st.session_state.sequence_type = None
|
738 |
+
st.session_state.input_metrics = None
|
739 |
+
st.session_state.organism = None
|
740 |
+
|
741 |
+
# Always display the last analysis if it exists in session state
|
742 |
+
if st.session_state.get('input_metrics') and st.session_state.get('sequence_type'):
|
743 |
+
input_metrics = st.session_state.input_metrics
|
744 |
+
sequence_type = st.session_state.sequence_type
|
745 |
+
st.subheader("π Input Analysis")
|
746 |
+
metrics_col1, metrics_col2, metrics_col3 = st.columns(3)
|
747 |
+
with metrics_col1:
|
748 |
+
unit = "codons" if sequence_type == "dna" else "AA"
|
749 |
+
length = input_metrics.get('length', 0) if input_metrics else 0
|
750 |
+
gc_content = input_metrics.get('gc_content', 0) if input_metrics else 0
|
751 |
+
st.metric("Length", f"{length} {unit}")
|
752 |
+
st.metric("GC Content", f"{gc_content:.1f}%")
|
753 |
+
with metrics_col2:
|
754 |
+
cai_val = input_metrics.get('cai') if input_metrics else None
|
755 |
+
if cai_val:
|
756 |
+
label = "CAI" if sequence_type == "dna" else "CAI (baseline)"
|
757 |
+
st.metric(label, f"{cai_val:.3f}")
|
758 |
+
else:
|
759 |
+
st.metric("CAI", "N/A")
|
760 |
+
with metrics_col3:
|
761 |
+
tai_val = input_metrics.get('tai') if input_metrics else None
|
762 |
+
if tai_val:
|
763 |
+
label = "tAI" if sequence_type == "dna" else "tAI (baseline)"
|
764 |
+
st.metric(label, f"{tai_val:.3f}")
|
765 |
+
else:
|
766 |
+
st.metric("tAI", "N/A")
|
767 |
+
st.subheader("π Sequence Quality Analysis")
|
768 |
+
analysis_col1, analysis_col2, analysis_col3 = st.columns(3)
|
769 |
+
with analysis_col1:
|
770 |
+
sites_count = input_metrics.get('restriction_sites', 0) if input_metrics else 0
|
771 |
+
color = "normal" if sites_count <= 2 else "inverse"
|
772 |
+
st.metric("Restriction Sites", sites_count)
|
773 |
+
with analysis_col2:
|
774 |
+
neg_elements = input_metrics.get('negative_cis_elements', 0) if input_metrics else 0
|
775 |
+
st.metric("Negative Elements", neg_elements)
|
776 |
+
with analysis_col3:
|
777 |
+
homo_runs = input_metrics.get('homopolymer_runs', 0) if input_metrics else 0
|
778 |
+
st.metric("Homopolymer Runs", homo_runs)
|
779 |
+
baseline_dna = input_metrics.get('baseline_dna', '') if input_metrics else ''
|
780 |
+
if baseline_dna and len(baseline_dna) > 150:
|
781 |
+
st.subheader("π GC Content Distribution")
|
782 |
+
fig = create_gc_content_plot(baseline_dna)
|
783 |
+
fig.update_layout(
|
784 |
+
title="Input Sequence GC Content Analysis",
|
785 |
+
xaxis_title="Position (codons)",
|
786 |
+
yaxis_title="GC Content (%)",
|
787 |
+
hovermode='x unified'
|
788 |
+
)
|
789 |
+
st.plotly_chart(fig, use_container_width=True)
|
790 |
+
|
791 |
+
with col2:
|
792 |
+
st.header("π Optimization Results")
|
793 |
+
# Enhanced optimization button
|
794 |
+
if (
|
795 |
+
st.session_state.get('sequence_clean')
|
796 |
+
and st.session_state.get('sequence_type')
|
797 |
+
and not st.session_state.optimization_running
|
798 |
+
):
|
799 |
+
st.markdown("**Ready to optimize your sequence!**")
|
800 |
+
strategy_info = st.container()
|
801 |
+
with strategy_info:
|
802 |
+
st.info(f"""
|
803 |
+
**Optimization Strategy:**
|
804 |
+
β’ Target organism: {st.session_state.organism}
|
805 |
+
β’ Model: Fine-tuned CodonTransformer (89.6M parameters)
|
806 |
+
β’ GC target: {gc_target_min}-{gc_target_max}%
|
807 |
+
β’ Mode: {'Deterministic' if use_deterministic else 'Stochastic'}
|
808 |
+
""")
|
809 |
+
if st.button("π Optimize Sequence", type="primary", use_container_width=True):
|
810 |
+
st.session_state.results = None
|
811 |
+
if st.session_state.sequence_type == "dna":
|
812 |
+
protein_sequence = translate_dna_to_protein(st.session_state.sequence_clean)
|
813 |
+
run_optimization(protein_sequence, st.session_state.organism, use_post_processing)
|
814 |
+
else:
|
815 |
+
run_optimization(st.session_state.sequence_clean, st.session_state.organism, use_post_processing)
|
816 |
+
|
817 |
+
# Enhanced progress display
|
818 |
+
if st.session_state.optimization_running:
|
819 |
+
st.info("π **Optimizing sequence with our model...**")
|
820 |
+
|
821 |
+
# Create progress container
|
822 |
+
progress_container = st.container()
|
823 |
+
with progress_container:
|
824 |
+
progress_bar = st.progress(0)
|
825 |
+
status_text = st.empty()
|
826 |
+
|
827 |
+
# Enhanced progress steps
|
828 |
+
steps = [
|
829 |
+
"π Analyzing input sequence structure...",
|
830 |
+
"𧬠Loading fine-tuned CodonTransformer model...",
|
831 |
+
"β‘ Running optimization algorithm...",
|
832 |
+
"π― Optimizing GC content for synthesis...",
|
833 |
+
"β
Finalizing optimized sequence..."
|
834 |
+
]
|
835 |
+
|
836 |
+
for i, step in enumerate(steps):
|
837 |
+
progress_value = int((i + 1) / len(steps) * 100)
|
838 |
+
progress_bar.progress(progress_value)
|
839 |
+
status_text.text(step)
|
840 |
+
time.sleep(0.8) # Realistic timing
|
841 |
+
|
842 |
+
progress_bar.empty()
|
843 |
+
status_text.empty()
|
844 |
+
|
845 |
+
# Enhanced results display
|
846 |
+
if st.session_state.results and not st.session_state.optimization_running:
|
847 |
+
if isinstance(st.session_state.results, str):
|
848 |
+
st.error(f"β **Optimization Failed:** {st.session_state.results}")
|
849 |
+
else:
|
850 |
+
display_optimization_results(
|
851 |
+
st.session_state.results,
|
852 |
+
st.session_state.get('organism', organism),
|
853 |
+
st.session_state.get('sequence_clean', ''),
|
854 |
+
st.session_state.get('sequence_type', 'protein'),
|
855 |
+
st.session_state.get('input_metrics', {})
|
856 |
+
)
|
857 |
+
|
858 |
+
def display_optimization_results(result, organism, original_sequence, sequence_type, input_metrics):
|
859 |
+
"""Enhanced results display with publication-quality visualizations"""
|
860 |
+
|
861 |
+
# Calculate optimized metrics
|
862 |
+
optimized_metrics = {
|
863 |
+
'gc_content': get_GC_content(result.predicted_dna),
|
864 |
+
'length': len(result.predicted_dna)
|
865 |
+
}
|
866 |
+
|
867 |
+
# Calculate CAI and tAI
|
868 |
+
try:
|
869 |
+
if 'cai_weights' in st.session_state and st.session_state['cai_weights']:
|
870 |
+
optimized_metrics['cai'] = CAI(result.predicted_dna, weights=st.session_state['cai_weights'])
|
871 |
+
else:
|
872 |
+
optimized_metrics['cai'] = None
|
873 |
+
except:
|
874 |
+
optimized_metrics['cai'] = None
|
875 |
+
|
876 |
+
try:
|
877 |
+
if 'tai_weights' in st.session_state and st.session_state['tai_weights']:
|
878 |
+
optimized_metrics['tai'] = calculate_tAI(result.predicted_dna, st.session_state['tai_weights'])
|
879 |
+
else:
|
880 |
+
optimized_metrics['tai'] = None
|
881 |
+
except:
|
882 |
+
optimized_metrics['tai'] = None
|
883 |
+
|
884 |
+
# Success header
|
885 |
+
st.success("β
**Optimization Complete!** ")
|
886 |
+
|
887 |
+
# Key improvements summary
|
888 |
+
st.subheader("π― Optimization Improvements")
|
889 |
+
imp_col1, imp_col2, imp_col3 = st.columns(3)
|
890 |
+
|
891 |
+
if input_metrics is not None:
|
892 |
+
with imp_col1:
|
893 |
+
if input_metrics.get('gc_content') and optimized_metrics.get('gc_content'):
|
894 |
+
gc_change = optimized_metrics['gc_content'] - input_metrics['gc_content']
|
895 |
+
st.metric("GC Content", f"{optimized_metrics['gc_content']:.1f}%", delta=f"{gc_change:+.1f}%")
|
896 |
+
|
897 |
+
with imp_col2:
|
898 |
+
if input_metrics.get('cai') and optimized_metrics.get('cai'):
|
899 |
+
cai_change = optimized_metrics['cai'] - input_metrics['cai']
|
900 |
+
st.metric("CAI Score", f"{optimized_metrics['cai']:.3f}", delta=f"{cai_change:+.3f}")
|
901 |
+
|
902 |
+
with imp_col3:
|
903 |
+
if input_metrics.get('tai') and optimized_metrics.get('tai'):
|
904 |
+
tai_change = optimized_metrics['tai'] - input_metrics['tai']
|
905 |
+
st.metric("tAI Score", f"{optimized_metrics['tai']:.3f}", delta=f"{tai_change:+.3f}")
|
906 |
+
|
907 |
+
# Optimized DNA sequence display
|
908 |
+
st.subheader("𧬠Optimized DNA Sequence")
|
909 |
+
st.text_area("Optimized DNA Sequence", result.predicted_dna, height=100)
|
910 |
+
|
911 |
+
# Enhanced download and export options
|
912 |
+
col1, col2, col3 = st.columns(3)
|
913 |
+
with col1:
|
914 |
+
st.download_button(
|
915 |
+
label="π₯ Download DNA (FASTA)",
|
916 |
+
data=f">Optimized_{organism.replace(' ', '_')}\n{result.predicted_dna}",
|
917 |
+
file_name=f"optimized_sequence_{organism.replace(' ', '_')}.fasta",
|
918 |
+
mime="text/plain"
|
919 |
+
)
|
920 |
+
|
921 |
+
with col2:
|
922 |
+
# Create CSV report
|
923 |
+
csv_data = f"Metric,Original,Optimized,Improvement\n"
|
924 |
+
csv_data += f"GC Content (%),{input_metrics['gc_content']:.1f},{optimized_metrics['gc_content']:.1f},{optimized_metrics['gc_content'] - input_metrics['gc_content']:+.1f}\n"
|
925 |
+
if input_metrics['cai'] and optimized_metrics['cai']:
|
926 |
+
csv_data += f"CAI Score,{input_metrics['cai']:.3f},{optimized_metrics['cai']:.3f},{optimized_metrics['cai'] - input_metrics['cai']:+.3f}\n"
|
927 |
+
if input_metrics['tai'] and optimized_metrics['tai']:
|
928 |
+
csv_data += f"tAI Score,{input_metrics['tai']:.3f},{optimized_metrics['tai']:.3f},{optimized_metrics['tai'] - input_metrics['tai']:+.3f}\n"
|
929 |
+
|
930 |
+
st.download_button(
|
931 |
+
label="π Download Metrics (CSV)",
|
932 |
+
data=csv_data,
|
933 |
+
file_name=f"optimization_metrics_{organism.replace(' ', '_')}.csv",
|
934 |
+
mime="text/csv"
|
935 |
+
)
|
936 |
+
|
937 |
+
with col3:
|
938 |
+
st.button("π Generate PDF Report", help="Coming soon: Publication-quality PDF report")
|
939 |
+
|
940 |
+
# Enhanced comparison visualizations
|
941 |
+
st.subheader("π Before vs After Analysis")
|
942 |
+
|
943 |
+
# Create enhanced comparison charts
|
944 |
+
create_enhanced_comparison_charts(input_metrics, optimized_metrics, original_sequence, result.predicted_dna, sequence_type)
|
945 |
+
|
946 |
+
def create_enhanced_comparison_charts(input_metrics, optimized_metrics, original_dna, optimized_dna, sequence_type):
|
947 |
+
"""Create publication-quality comparison visualizations"""
|
948 |
+
if input_metrics is None or optimized_metrics is None:
|
949 |
+
st.info("No comparison data available.")
|
950 |
+
return
|
951 |
+
|
952 |
+
# GC Content comparison
|
953 |
+
gc_comp_fig = create_gc_comparison_chart(input_metrics, optimized_metrics)
|
954 |
+
gc_comp_fig.update_layout(
|
955 |
+
title="GC Content Optimization Results",
|
956 |
+
font=dict(size=12),
|
957 |
+
height=350
|
958 |
+
)
|
959 |
+
st.plotly_chart(gc_comp_fig, use_container_width=True)
|
960 |
+
|
961 |
+
# Expression metrics comparison
|
962 |
+
if input_metrics.get('cai') and optimized_metrics.get('cai'):
|
963 |
+
expr_comp_fig = create_expression_comparison_chart(input_metrics, optimized_metrics)
|
964 |
+
expr_comp_fig.update_layout(
|
965 |
+
title="Expression Potential Improvement",
|
966 |
+
font=dict(size=12),
|
967 |
+
height=350
|
968 |
+
)
|
969 |
+
st.plotly_chart(expr_comp_fig, use_container_width=True)
|
970 |
+
|
971 |
+
# Side-by-side GC distribution analysis
|
972 |
+
st.subheader("π GC Content Distribution Analysis")
|
973 |
+
col1, col2 = st.columns(2)
|
974 |
+
|
975 |
+
with col1:
|
976 |
+
st.write(f"**{'Original DNA' if sequence_type == 'dna' else 'Baseline (Most Frequent Codons)'}**")
|
977 |
+
baseline_dna = input_metrics.get('baseline_dna') if input_metrics else None
|
978 |
+
plot_dna = baseline_dna if baseline_dna is not None else original_dna
|
979 |
+
if plot_dna is not None and isinstance(plot_dna, str) and len(plot_dna) > 150:
|
980 |
+
fig_before = create_gc_content_plot(plot_dna)
|
981 |
+
fig_before.update_layout(title="Before Optimization", height=300)
|
982 |
+
st.plotly_chart(fig_before, use_container_width=True)
|
983 |
+
else:
|
984 |
+
st.info("Sequence too short for sliding window analysis")
|
985 |
+
|
986 |
+
with col2:
|
987 |
+
st.write("** Model Optimized**")
|
988 |
+
if optimized_dna is not None and isinstance(optimized_dna, str) and len(optimized_dna) > 150:
|
989 |
+
fig_after = create_gc_content_plot(optimized_dna)
|
990 |
+
fig_after.update_layout(title="After Optimization", height=300)
|
991 |
+
st.plotly_chart(fig_after, use_container_width=True)
|
992 |
+
else:
|
993 |
+
st.info("Sequence too short for sliding window analysis")
|
994 |
+
|
995 |
+
def batch_processing_interface():
|
996 |
+
"""Batch processing interface for multiple sequences"""
|
997 |
+
st.header("π Batch Processing")
|
998 |
+
st.markdown("**Process multiple protein sequences simultaneously with optimization**")
|
999 |
+
|
1000 |
+
# File upload section
|
1001 |
+
st.subheader("π€ Upload Sequences")
|
1002 |
+
uploaded_file = st.file_uploader(
|
1003 |
+
"Choose a file with multiple sequences",
|
1004 |
+
type=['csv', 'xlsx', 'fasta', 'txt', 'fa'],
|
1005 |
+
help="Upload CSV, Excel (XLSX, with 'sequence' column) or FASTA format files"
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
if uploaded_file:
|
1009 |
+
st.success(f"β
File uploaded: {uploaded_file.name}")
|
1010 |
+
|
1011 |
+
# Process uploaded file
|
1012 |
+
try:
|
1013 |
+
def find_column(df, target):
|
1014 |
+
# Find column name case-insensitively and ignoring spaces
|
1015 |
+
for col in df.columns:
|
1016 |
+
if col.strip().lower() == target:
|
1017 |
+
return col
|
1018 |
+
return None
|
1019 |
+
|
1020 |
+
if uploaded_file.name.endswith('.csv'):
|
1021 |
+
df = pd.read_csv(uploaded_file)
|
1022 |
+
seq_col = find_column(df, 'sequence')
|
1023 |
+
name_col = find_column(df, 'name')
|
1024 |
+
if seq_col:
|
1025 |
+
sequences = df[seq_col].tolist()
|
1026 |
+
if name_col:
|
1027 |
+
names = df[name_col].tolist()
|
1028 |
+
else:
|
1029 |
+
names = [f"Sequence_{i+1}" for i in range(len(sequences))]
|
1030 |
+
else:
|
1031 |
+
st.error("CSV file must contain a column named 'sequence' (case-insensitive, spaces ignored)")
|
1032 |
+
return
|
1033 |
+
elif uploaded_file.name.endswith('.xlsx'):
|
1034 |
+
df = pd.read_excel(uploaded_file)
|
1035 |
+
seq_col = find_column(df, 'sequence')
|
1036 |
+
name_col = find_column(df, 'name')
|
1037 |
+
if seq_col:
|
1038 |
+
sequences = df[seq_col].tolist()
|
1039 |
+
if name_col:
|
1040 |
+
names = df[name_col].tolist()
|
1041 |
+
else:
|
1042 |
+
names = [f"Sequence_{i+1}" for i in range(len(sequences))]
|
1043 |
+
else:
|
1044 |
+
st.error("Excel file must contain a column named 'sequence' (case-insensitive, spaces ignored)")
|
1045 |
+
return
|
1046 |
+
else:
|
1047 |
+
# Handle FASTA format
|
1048 |
+
content = uploaded_file.read().decode('utf-8')
|
1049 |
+
sequences, names = parse_fasta_content(content)
|
1050 |
+
|
1051 |
+
st.info(f"π Found {len(sequences)} sequences ready for optimization")
|
1052 |
+
|
1053 |
+
# Batch configuration
|
1054 |
+
col1, col2 = st.columns(2)
|
1055 |
+
with col1:
|
1056 |
+
batch_organism = st.selectbox("Target Organism", [
|
1057 |
+
"Escherichia coli general", "Saccharomyces cerevisiae", "Homo sapiens"
|
1058 |
+
])
|
1059 |
+
with col2:
|
1060 |
+
max_sequences = st.number_input("Max sequences to process", 1, len(sequences), min(10, len(sequences)))
|
1061 |
+
|
1062 |
+
# Start batch processing
|
1063 |
+
if st.button("π Start Batch Optimization", type="primary"):
|
1064 |
+
run_batch_optimization(sequences[:max_sequences], names[:max_sequences], batch_organism)
|
1065 |
+
|
1066 |
+
except Exception as e:
|
1067 |
+
st.error(f"Error processing file: {str(e)}")
|
1068 |
+
|
1069 |
+
# Batch results display
|
1070 |
+
if 'batch_results' in st.session_state and st.session_state.batch_results:
|
1071 |
+
display_batch_results()
|
1072 |
+
|
1073 |
+
def parse_fasta_content(content):
|
1074 |
+
"""Parse FASTA format content"""
|
1075 |
+
sequences = []
|
1076 |
+
names = []
|
1077 |
+
current_seq = ""
|
1078 |
+
current_name = ""
|
1079 |
+
|
1080 |
+
for line in content.split('\n'):
|
1081 |
+
line = line.strip()
|
1082 |
+
if line.startswith('>'):
|
1083 |
+
if current_seq:
|
1084 |
+
sequences.append(current_seq)
|
1085 |
+
names.append(current_name)
|
1086 |
+
current_name = line[1:] if len(line) > 1 else f"Sequence_{len(sequences)+1}"
|
1087 |
+
current_seq = ""
|
1088 |
+
else:
|
1089 |
+
current_seq += line
|
1090 |
+
|
1091 |
+
if current_seq:
|
1092 |
+
sequences.append(current_seq)
|
1093 |
+
names.append(current_name)
|
1094 |
+
|
1095 |
+
return sequences, names
|
1096 |
+
|
1097 |
+
def run_batch_optimization(sequences, names, organism):
|
1098 |
+
"""Run batch optimization with progress tracking"""
|
1099 |
+
st.session_state.batch_results = []
|
1100 |
+
st.session_state.batch_logs = [] # Collect info logs for auto-fixes
|
1101 |
+
|
1102 |
+
# Load reference data for CAI/tAI
|
1103 |
+
load_reference_data(organism)
|
1104 |
+
cai_weights = st.session_state.get('cai_weights', None)
|
1105 |
+
tai_weights = st.session_state.get('tai_weights', None)
|
1106 |
+
|
1107 |
+
# Create progress tracking
|
1108 |
+
progress_bar = st.progress(0)
|
1109 |
+
status_text = st.empty()
|
1110 |
+
|
1111 |
+
for i, (seq, name) in enumerate(zip(sequences, names)):
|
1112 |
+
progress = (i + 1) / len(sequences)
|
1113 |
+
progress_bar.progress(progress)
|
1114 |
+
status_text.text(f"Processing {name} ({i+1}/{len(sequences)})")
|
1115 |
+
|
1116 |
+
try:
|
1117 |
+
# Validate sequence and get possibly fixed sequence
|
1118 |
+
is_valid, message, sequence_type, fixed_seq = validate_sequence(seq)
|
1119 |
+
if is_valid:
|
1120 |
+
# Log if auto-fixed
|
1121 |
+
if 'auto-fixed' in message:
|
1122 |
+
st.session_state.batch_logs.append(f"{name}: {message}")
|
1123 |
+
# Calculate original metrics (use fixed_seq for DNA)
|
1124 |
+
if sequence_type == "dna":
|
1125 |
+
orig_gc = get_GC_content(fixed_seq)
|
1126 |
+
orig_cai = CAI(fixed_seq, weights=cai_weights) if cai_weights else None
|
1127 |
+
orig_tai = calculate_tAI(fixed_seq, tai_weights) if tai_weights else None
|
1128 |
+
else:
|
1129 |
+
# For protein, create baseline DNA
|
1130 |
+
most_frequent_codons = {
|
1131 |
+
'A': 'GCG', 'C': 'TGC', 'D': 'GAT', 'E': 'GAA', 'F': 'TTT',
|
1132 |
+
'G': 'GGC', 'H': 'CAT', 'I': 'ATT', 'K': 'AAA', 'L': 'CTG',
|
1133 |
+
'M': 'ATG', 'N': 'AAC', 'P': 'CCG', 'Q': 'CAG', 'R': 'CGC',
|
1134 |
+
'S': 'TCG', 'T': 'ACG', 'V': 'GTG', 'W': 'TGG', 'Y': 'TAT',
|
1135 |
+
'*': 'TAA', '_': 'TAA'
|
1136 |
+
}
|
1137 |
+
baseline_dna = ''.join([most_frequent_codons.get(aa, 'NNN') for aa in fixed_seq])
|
1138 |
+
orig_gc = get_GC_content(baseline_dna)
|
1139 |
+
orig_cai = CAI(baseline_dna, weights=cai_weights) if cai_weights else None
|
1140 |
+
orig_tai = calculate_tAI(baseline_dna, tai_weights) if tai_weights else None
|
1141 |
+
|
1142 |
+
# Run optimization using the fixed sequence
|
1143 |
+
result = predict_dna_sequence(
|
1144 |
+
protein=fixed_seq if sequence_type == "protein" else translate_dna_to_protein(fixed_seq),
|
1145 |
+
organism=organism,
|
1146 |
+
device=st.session_state.device,
|
1147 |
+
model=st.session_state.model,
|
1148 |
+
deterministic=True,
|
1149 |
+
match_protein=True,
|
1150 |
+
)
|
1151 |
+
|
1152 |
+
# If result is a list, use the first element
|
1153 |
+
if isinstance(result, list):
|
1154 |
+
result_obj = result[0]
|
1155 |
+
else:
|
1156 |
+
result_obj = result
|
1157 |
+
|
1158 |
+
# Calculate optimized metrics
|
1159 |
+
opt_gc = get_GC_content(result_obj.predicted_dna)
|
1160 |
+
opt_cai = CAI(result_obj.predicted_dna, weights=cai_weights) if cai_weights else None
|
1161 |
+
opt_tai = calculate_tAI(result_obj.predicted_dna, tai_weights) if tai_weights else None
|
1162 |
+
|
1163 |
+
metrics = {
|
1164 |
+
'name': name,
|
1165 |
+
'original_sequence': fixed_seq,
|
1166 |
+
'optimized_dna': result_obj.predicted_dna,
|
1167 |
+
'gc_content_before': orig_gc,
|
1168 |
+
'gc_content_after': opt_gc,
|
1169 |
+
'cai_before': orig_cai,
|
1170 |
+
'cai_after': opt_cai,
|
1171 |
+
'tai_before': orig_tai,
|
1172 |
+
'tai_after': opt_tai,
|
1173 |
+
'length_before': len(fixed_seq),
|
1174 |
+
'length_after': len(result_obj.predicted_dna),
|
1175 |
+
'validation_message': message
|
1176 |
+
}
|
1177 |
+
|
1178 |
+
st.session_state.batch_results.append(metrics)
|
1179 |
+
else:
|
1180 |
+
# Only skip if truly invalid (not auto-fixable)
|
1181 |
+
st.session_state.batch_logs.append(f"{name}: {message}")
|
1182 |
+
|
1183 |
+
except Exception as e:
|
1184 |
+
st.session_state.batch_logs.append(f"{name}: Error processing: {str(e)}")
|
1185 |
+
|
1186 |
+
progress_bar.empty()
|
1187 |
+
status_text.empty()
|
1188 |
+
st.success(f"β
Batch optimization complete! Processed {len(st.session_state.batch_results)} sequences.")
|
1189 |
+
|
1190 |
+
def display_batch_results():
|
1191 |
+
"""Display batch processing results"""
|
1192 |
+
st.subheader("π Batch Results")
|
1193 |
+
|
1194 |
+
# Show all logs (auto-fixes and errors)
|
1195 |
+
if hasattr(st.session_state, 'batch_logs') and st.session_state.batch_logs:
|
1196 |
+
for log in st.session_state.batch_logs:
|
1197 |
+
st.info(log)
|
1198 |
+
|
1199 |
+
results_df = pd.DataFrame(st.session_state.batch_results)
|
1200 |
+
|
1201 |
+
# Summary statistics
|
1202 |
+
col1, col2, col3, col4 = st.columns(4)
|
1203 |
+
with col1:
|
1204 |
+
st.metric("Sequences Processed", len(results_df))
|
1205 |
+
with col2:
|
1206 |
+
st.metric("Avg GC Before", f"{results_df['gc_content_before'].mean():.1f}%")
|
1207 |
+
st.metric("Avg GC After", f"{results_df['gc_content_after'].mean():.1f}%")
|
1208 |
+
with col3:
|
1209 |
+
st.metric("Avg CAI Before", f"{results_df['cai_before'].mean():.3f}")
|
1210 |
+
st.metric("Avg CAI After", f"{results_df['cai_after'].mean():.3f}")
|
1211 |
+
with col4:
|
1212 |
+
st.metric("Avg tAI Before", f"{results_df['tai_before'].mean():.3f}")
|
1213 |
+
st.metric("Avg tAI After", f"{results_df['tai_after'].mean():.3f}")
|
1214 |
+
|
1215 |
+
# CAI Extremes Analysis
|
1216 |
+
st.subheader("π― CAI Performance Analysis")
|
1217 |
+
|
1218 |
+
# Filter out rows with NaN CAI values for analysis
|
1219 |
+
valid_cai_df = results_df.dropna(subset=['cai_after'])
|
1220 |
+
|
1221 |
+
if len(valid_cai_df) > 0:
|
1222 |
+
# Find lowest and highest CAI sequences
|
1223 |
+
lowest_cai_idx = valid_cai_df['cai_after'].idxmin()
|
1224 |
+
highest_cai_idx = valid_cai_df['cai_after'].idxmax()
|
1225 |
+
|
1226 |
+
lowest_cai_row = results_df.loc[lowest_cai_idx]
|
1227 |
+
highest_cai_row = results_df.loc[highest_cai_idx]
|
1228 |
+
|
1229 |
+
col1, col2 = st.columns(2)
|
1230 |
+
|
1231 |
+
with col1:
|
1232 |
+
st.markdown("**π» Lowest CAI Sequence**")
|
1233 |
+
st.write(f"**Name:** {lowest_cai_row['name']}")
|
1234 |
+
st.metric("CAI Score", f"{lowest_cai_row['cai_after']:.3f}")
|
1235 |
+
st.metric("GC Content", f"{lowest_cai_row['gc_content_after']:.1f}%")
|
1236 |
+
st.metric("tAI Score", f"{lowest_cai_row['tai_after']:.3f}")
|
1237 |
+
st.metric("Length", f"{lowest_cai_row['length_after']} bp")
|
1238 |
+
|
1239 |
+
# Show improvement
|
1240 |
+
if pd.notna(lowest_cai_row['cai_before']):
|
1241 |
+
cai_improvement = lowest_cai_row['cai_after'] - lowest_cai_row['cai_before']
|
1242 |
+
st.metric("CAI Improvement", f"{cai_improvement:+.3f}")
|
1243 |
+
|
1244 |
+
with col2:
|
1245 |
+
st.markdown("**πΊ Highest CAI Sequence**")
|
1246 |
+
st.write(f"**Name:** {highest_cai_row['name']}")
|
1247 |
+
st.metric("CAI Score", f"{highest_cai_row['cai_after']:.3f}")
|
1248 |
+
st.metric("GC Content", f"{highest_cai_row['gc_content_after']:.1f}%")
|
1249 |
+
st.metric("tAI Score", f"{highest_cai_row['tai_after']:.3f}")
|
1250 |
+
st.metric("Length", f"{highest_cai_row['length_after']} bp")
|
1251 |
+
|
1252 |
+
# Show improvement
|
1253 |
+
if pd.notna(highest_cai_row['cai_before']):
|
1254 |
+
cai_improvement = highest_cai_row['cai_after'] - highest_cai_row['cai_before']
|
1255 |
+
st.metric("CAI Improvement", f"{cai_improvement:+.3f}")
|
1256 |
+
|
1257 |
+
# CAI Distribution Chart
|
1258 |
+
st.subheader("π CAI Distribution")
|
1259 |
+
fig = go.Figure()
|
1260 |
+
fig.add_trace(go.Histogram(
|
1261 |
+
x=valid_cai_df['cai_after'],
|
1262 |
+
nbinsx=20,
|
1263 |
+
name='Optimized CAI Scores',
|
1264 |
+
marker_color='darkblue',
|
1265 |
+
opacity=0.7
|
1266 |
+
))
|
1267 |
+
|
1268 |
+
# Add vertical lines for lowest and highest
|
1269 |
+
fig.add_vline(
|
1270 |
+
x=lowest_cai_row['cai_after'],
|
1271 |
+
line_dash="dash",
|
1272 |
+
line_color="red",
|
1273 |
+
annotation_text=f"Lowest: {lowest_cai_row['cai_after']:.3f}"
|
1274 |
+
)
|
1275 |
+
fig.add_vline(
|
1276 |
+
x=highest_cai_row['cai_after'],
|
1277 |
+
line_dash="dash",
|
1278 |
+
line_color="green",
|
1279 |
+
annotation_text=f"Highest: {highest_cai_row['cai_after']:.3f}"
|
1280 |
+
)
|
1281 |
+
|
1282 |
+
fig.update_layout(
|
1283 |
+
title="Distribution of Optimized CAI Scores",
|
1284 |
+
xaxis_title="CAI Score",
|
1285 |
+
yaxis_title="Number of Sequences",
|
1286 |
+
height=400,
|
1287 |
+
showlegend=False
|
1288 |
+
)
|
1289 |
+
st.plotly_chart(fig, use_container_width=True)
|
1290 |
+
|
1291 |
+
# GC Content Distribution Chart
|
1292 |
+
st.subheader("π GC Content Distribution")
|
1293 |
+
valid_gc_df = results_df.dropna(subset=['gc_content_after'])
|
1294 |
+
if len(valid_gc_df) > 0:
|
1295 |
+
lowest_gc_idx = valid_gc_df['gc_content_after'].idxmin()
|
1296 |
+
highest_gc_idx = valid_gc_df['gc_content_after'].idxmax()
|
1297 |
+
lowest_gc_row = results_df.loc[lowest_gc_idx]
|
1298 |
+
highest_gc_row = results_df.loc[highest_gc_idx]
|
1299 |
+
|
1300 |
+
fig_gc = go.Figure()
|
1301 |
+
fig_gc.add_trace(go.Histogram(
|
1302 |
+
x=valid_gc_df['gc_content_after'],
|
1303 |
+
nbinsx=20,
|
1304 |
+
name='Optimized GC Content',
|
1305 |
+
marker_color='teal',
|
1306 |
+
opacity=0.7
|
1307 |
+
))
|
1308 |
+
fig_gc.add_vline(
|
1309 |
+
x=lowest_gc_row['gc_content_after'],
|
1310 |
+
line_dash="dash",
|
1311 |
+
line_color="red",
|
1312 |
+
annotation_text=f"Lowest: {lowest_gc_row['gc_content_after']:.1f}%"
|
1313 |
+
)
|
1314 |
+
fig_gc.add_vline(
|
1315 |
+
x=highest_gc_row['gc_content_after'],
|
1316 |
+
line_dash="dash",
|
1317 |
+
line_color="green",
|
1318 |
+
annotation_text=f"Highest: {highest_gc_row['gc_content_after']:.1f}%"
|
1319 |
+
)
|
1320 |
+
fig_gc.update_layout(
|
1321 |
+
title="Distribution of Optimized GC Content",
|
1322 |
+
xaxis_title="GC Content (%)",
|
1323 |
+
yaxis_title="Number of Sequences",
|
1324 |
+
height=400,
|
1325 |
+
showlegend=False
|
1326 |
+
)
|
1327 |
+
st.plotly_chart(fig_gc, use_container_width=True)
|
1328 |
+
else:
|
1329 |
+
st.warning("β οΈ No valid GC content values found in the batch results.")
|
1330 |
+
|
1331 |
+
else:
|
1332 |
+
st.warning("β οΈ No valid CAI scores found in the batch results. Check if CAI weights are properly loaded.")
|
1333 |
+
|
1334 |
+
# Sequence selector
|
1335 |
+
seq_names = results_df['name'].tolist()
|
1336 |
+
selected_seq = st.selectbox("Select a sequence to view details", seq_names)
|
1337 |
+
seq_row = results_df[results_df['name'] == selected_seq].iloc[0]
|
1338 |
+
|
1339 |
+
st.markdown(f"### Details for: {selected_seq}")
|
1340 |
+
if 'validation_message' in seq_row and 'auto-fixed' in seq_row['validation_message']:
|
1341 |
+
st.info(seq_row['validation_message'])
|
1342 |
+
col1, col2 = st.columns(2)
|
1343 |
+
with col1:
|
1344 |
+
st.markdown("**Original Sequence**")
|
1345 |
+
st.text_area("Original Sequence", seq_row['original_sequence'], height=100)
|
1346 |
+
st.metric("GC Content (Before)", f"{seq_row['gc_content_before']:.1f}%")
|
1347 |
+
st.metric("CAI (Before)", f"{seq_row['cai_before']:.3f}")
|
1348 |
+
st.metric("tAI (Before)", f"{seq_row['tai_before']:.3f}")
|
1349 |
+
st.metric("Length (Before)", f"{seq_row['length_before']}")
|
1350 |
+
with col2:
|
1351 |
+
st.markdown("**Optimized Sequence**")
|
1352 |
+
st.text_area("Optimized Sequence", seq_row['optimized_dna'], height=100)
|
1353 |
+
st.metric("GC Content (After)", f"{seq_row['gc_content_after']:.1f}%")
|
1354 |
+
st.metric("CAI (After)", f"{seq_row['cai_after']:.3f}")
|
1355 |
+
st.metric("tAI (After)", f"{seq_row['tai_after']:.3f}")
|
1356 |
+
st.metric("Length (After)", f"{seq_row['length_after']}")
|
1357 |
+
|
1358 |
+
# Plots for before/after GC content
|
1359 |
+
st.subheader("GC Content Distribution (Before vs After)")
|
1360 |
+
if len(seq_row['original_sequence']) > 150 and len(seq_row['optimized_dna']) > 150:
|
1361 |
+
fig_before = create_gc_content_plot(seq_row['original_sequence'])
|
1362 |
+
fig_before.update_layout(title="Before Optimization", height=300)
|
1363 |
+
fig_after = create_gc_content_plot(seq_row['optimized_dna'])
|
1364 |
+
fig_after.update_layout(title="After Optimization", height=300)
|
1365 |
+
st.plotly_chart(fig_before, use_container_width=True)
|
1366 |
+
st.plotly_chart(fig_after, use_container_width=True)
|
1367 |
+
else:
|
1368 |
+
st.info("Sequence(s) too short for sliding window analysis")
|
1369 |
+
|
1370 |
+
# Download batch results
|
1371 |
+
if st.button("π₯ Download Batch Results"):
|
1372 |
+
csv_data = results_df.to_csv(index=False)
|
1373 |
+
st.download_button(
|
1374 |
+
label="Download CSV",
|
1375 |
+
data=csv_data,
|
1376 |
+
file_name="batch_optimization_results.csv",
|
1377 |
+
mime="text/csv"
|
1378 |
+
)
|
1379 |
+
|
1380 |
+
def comparative_analysis_interface():
|
1381 |
+
"""Comparative analysis interface"""
|
1382 |
+
st.header("π Comparative Analysis")
|
1383 |
+
st.markdown("**Compare optimization strategies side-by-side**")
|
1384 |
+
|
1385 |
+
st.info("π§ **Coming Soon:** Compare our model against traditional methods (HFC, BFC, URC) and generate publication-quality comparative analysis.")
|
1386 |
+
|
1387 |
+
# Placeholder for future implementation
|
1388 |
+
col1, col2 = st.columns(2)
|
1389 |
+
with col1:
|
1390 |
+
st.subheader("Algorithm Comparison")
|
1391 |
+
st.write("β’ ColiFormer (Our Model)")
|
1392 |
+
st.write("β’ High Frequency Choice (HFC)")
|
1393 |
+
st.write("β’ Background Frequency Choice (BFC)")
|
1394 |
+
st.write("β’ Uniform Random Choice (URC)")
|
1395 |
+
|
1396 |
+
with col2:
|
1397 |
+
st.subheader("Comparison Metrics")
|
1398 |
+
st.write("β’ CAI Score Comparison")
|
1399 |
+
st.write("β’ tAI Score Comparison")
|
1400 |
+
st.write("β’ GC Content Analysis")
|
1401 |
+
st.write("β’ Statistical Significance Testing")
|
1402 |
+
|
1403 |
+
def advanced_settings_interface():
|
1404 |
+
"""Advanced settings and configuration interface"""
|
1405 |
+
st.header("βοΈ Advanced Settings")
|
1406 |
+
st.markdown("**Configure advanced parameters and model settings**")
|
1407 |
+
|
1408 |
+
# Model configuration
|
1409 |
+
st.subheader("π€ Model Configuration")
|
1410 |
+
col1, col2 = st.columns(2)
|
1411 |
+
|
1412 |
+
with col1:
|
1413 |
+
st.write("**Current Model Status:**")
|
1414 |
+
if st.session_state.model:
|
1415 |
+
model_type = getattr(st.session_state, 'model_type', 'unknown')
|
1416 |
+
st.success(f"β
Model loaded: {model_type}")
|
1417 |
+
st.write(f"Device: {st.session_state.device}")
|
1418 |
+
else:
|
1419 |
+
st.warning("β οΈ Model not loaded")
|
1420 |
+
|
1421 |
+
with col2:
|
1422 |
+
st.write("**Model Information:**")
|
1423 |
+
st.write("β’ Architecture: BigBird Transformer")
|
1424 |
+
st.write("β’ Parameters: 89.6M")
|
1425 |
+
st.write("β’ Training: 4,316 high-CAI E. coli genes")
|
1426 |
+
st.write("β’ Performance: +5.1% CAI, +8.6% tAI")
|
1427 |
+
|
1428 |
+
# Performance tuning
|
1429 |
+
st.subheader("β‘ Performance Tuning")
|
1430 |
+
|
1431 |
+
# Memory management
|
1432 |
+
col1, col2 = st.columns(2)
|
1433 |
+
with col1:
|
1434 |
+
if st.button("π§Ή Clear Cache"):
|
1435 |
+
st.cache_data.clear()
|
1436 |
+
st.success("Cache cleared successfully")
|
1437 |
+
|
1438 |
+
with col2:
|
1439 |
+
if st.button("π Reload Model"):
|
1440 |
+
st.session_state.model = None
|
1441 |
+
st.session_state.tokenizer = None
|
1442 |
+
st.rerun()
|
1443 |
+
|
1444 |
+
# System information
|
1445 |
+
st.subheader("π» System Information")
|
1446 |
+
import torch
|
1447 |
+
col1, col2, col3 = st.columns(3)
|
1448 |
+
|
1449 |
+
with col1:
|
1450 |
+
st.write("**PyTorch:**")
|
1451 |
+
st.write(f"Version: {torch.__version__}")
|
1452 |
+
st.write(f"CUDA Available: {torch.cuda.is_available()}")
|
1453 |
+
|
1454 |
+
with col2:
|
1455 |
+
st.write("**Device:**")
|
1456 |
+
st.write(f"Current: {st.session_state.device}")
|
1457 |
+
if torch.cuda.is_available():
|
1458 |
+
st.write(f"GPU: {torch.cuda.get_device_name()}")
|
1459 |
+
|
1460 |
+
with col3:
|
1461 |
+
st.write("**Memory:**")
|
1462 |
+
if torch.cuda.is_available():
|
1463 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9
|
1464 |
+
st.write(f"GPU Memory: {gpu_memory:.1f} GB")
|
1465 |
+
|
1466 |
+
# Footer
|
1467 |
+
st.markdown("---")
|
1468 |
+
st.markdown("**ColiFormer **")
|
1469 |
+
st.markdown("π Built for Nature Communications-level research β’ Targeting >20% CAI improvements β’ Aug 2025 experimental validation")
|
1470 |
+
|
1471 |
+
if __name__ == "__main__":
|
1472 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit>=1.28.0
|
2 |
+
torch>=1.13.0
|
3 |
+
pandas>=1.5.0
|
4 |
+
numpy>=1.21.0
|
5 |
+
plotly>=5.0.0
|
6 |
+
transformers>=4.21.0
|
7 |
+
scipy>=1.9.0
|
8 |
+
tokenizers>=0.13.0
|
9 |
+
tqdm>=4.64.0
|
10 |
+
matplotlib>=3.5.0
|
11 |
+
seaborn>=0.11.0
|
12 |
+
onnxruntime>=1.15.0
|
13 |
+
python-codon-tables>=0.1.12
|
14 |
+
biopython>=1.79
|
15 |
+
scikit-learn>=1.0.0
|
16 |
+
requests>=2.25.0
|
17 |
+
ipywidgets>=7.6.0
|
18 |
+
huggingface-hub>=0.20.0
|
19 |
+
datasets>=2.0.0
|
20 |
+
git+https://github.com/Benjamin-Lee/CodonAdaptationIndex.git
|