File size: 909 Bytes
67c6de9
e94f0c8
b32034a
2daff71
8349717
e94f0c8
 
7f35276
67c6de9
2daff71
67c6de9
8349717
 
 
 
 
 
 
 
 
 
67c6de9
 
8349717
b32034a
67c6de9
 
8349717
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import gradio as gr
from huggingface_hub import InferenceClient, login
import random
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFacePipeline
from langchain.schema import AIMessage, HumanMessage
import os

login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])

model = ChatOpenAI(model="HuggingFaceH4/zephyr-7b-beta")

def predict(message, history):
    history_langchain_format = []
    for msg in history:
        if msg['role'] == "user":
            history_langchain_format.append(HumanMessage(content=msg['content']))
        elif msg['role'] == "assistant":
            history_langchain_format.append(AIMessage(content=msg['content']))
    history_langchain_format.append(HumanMessage(content=message))
    gpt_response = model.invoke(history_langchain_format)
    return gpt_response.content

demo = gr.ChatInterface(
    predict,
    type="messages"
)

demo.launch()