GenAI_Course / app.py
sam522's picture
debug
d6d38f9
raw
history blame
2.5 kB
import gradio as gr
from typing import TypedDict, Annotated
from huggingface_hub import InferenceClient, login
import random
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFacePipeline
from langchain.schema import AIMessage, HumanMessage
from langchain.tools import Tool
import os
import datasets
from langchain.docstore.document import Document
from langgraph.graph import START, StateGraph
from langchain_community.retrievers import BM25Retriever
from retriever import extract_text
HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
login(token=HUGGINGFACEHUB_API_TOKEN)
# Load the dataset
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
# Convert dataset entries into Document objects
docs = [
Document(
page_content="\n".join([
f"Name: {guest['name']}",
f"Relation: {guest['relation']}",
f"Description: {guest['description']}",
f"Email: {guest['email']}"
]),
metadata={"name": guest["name"]}
)
for guest in guest_dataset
]
bm25_retriever = BM25Retriever.from_documents(docs)
llm = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
)
model = ChatHuggingFace(llm=llm, verbose=True)
def predict(message, history):
history_langchain_format = []
for msg in history:
if msg['role'] == "user":
history_langchain_format.append(HumanMessage(content=msg['content']))
elif msg['role'] == "assistant":
history_langchain_format.append(AIMessage(content=msg['content']))
history_langchain_format.append(HumanMessage(content=message))
gpt_response = model.invoke(history_langchain_format)
return gpt_response.content
demo = gr.ChatInterface(
predict,
type="messages"
)
# setup agents
guest_info_tool = Tool(
name="guest_info_retriever",
func=extract_text,
description="Retrieves detailed information about gala guests based on their name or relation."
)
tools = [guest_info_tool]
chat_with_tools = model.bind_tools(tools)
# Generate the AgentState and Agent graph
class AgentState(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
def assistant(state: AgentState):
return {
"messages": [chat_with_tools.invoke(state["messages"])],
}
## The graph
builder = StateGraph(AgentState)
demo.launch()