Spaces:
Running
Running
chatbot
Browse files
app.py
CHANGED
@@ -55,6 +55,7 @@ llm = HuggingFaceEndpoint(
|
|
55 |
|
56 |
model = ChatHuggingFace(llm=llm, verbose=True)
|
57 |
|
|
|
58 |
def predict(message, history):
|
59 |
history_langchain_format = []
|
60 |
for msg in history:
|
@@ -65,7 +66,28 @@ def predict(message, history):
|
|
65 |
history_langchain_format.append(HumanMessage(content=message))
|
66 |
gpt_response = model.invoke(history_langchain_format)
|
67 |
return gpt_response.content
|
|
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# setup agents
|
71 |
|
|
|
55 |
|
56 |
model = ChatHuggingFace(llm=llm, verbose=True)
|
57 |
|
58 |
+
"""
|
59 |
def predict(message, history):
|
60 |
history_langchain_format = []
|
61 |
for msg in history:
|
|
|
66 |
history_langchain_format.append(HumanMessage(content=message))
|
67 |
gpt_response = model.invoke(history_langchain_format)
|
68 |
return gpt_response.content
|
69 |
+
"""
|
70 |
|
71 |
+
def predict(message, history):
|
72 |
+
# Convert Gradio history to LangChain message format
|
73 |
+
history_langchain_format = []
|
74 |
+
for msg in history:
|
75 |
+
if msg['role'] == "user":
|
76 |
+
history_langchain_format.append(HumanMessage(content=msg['content']))
|
77 |
+
elif msg['role'] == "assistant":
|
78 |
+
history_langchain_format.append(AIMessage(content=msg['content"]))
|
79 |
+
|
80 |
+
# Add new user message
|
81 |
+
history_langchain_format.append(HumanMessage(content=message))
|
82 |
+
|
83 |
+
# Invoke Alfred agent with full message history
|
84 |
+
response = alfred.invoke(
|
85 |
+
input={"messages": history_langchain_format},
|
86 |
+
config={"recursion_limit": 100}
|
87 |
+
)
|
88 |
+
|
89 |
+
# Extract final assistant message
|
90 |
+
return response["messages"][-1].content
|
91 |
|
92 |
# setup agents
|
93 |
|