Spaces:
Running
Running
Samuel Thomas
commited on
Commit
·
7f930e4
1
Parent(s):
bb2d086
test
Browse files- .gitignore +2 -1
- app.py +28 -68
- mytools.py +48 -0
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
__pycache__/
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.env
|
app.py
CHANGED
@@ -1,27 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
from typing import TypedDict, Annotated
|
3 |
from huggingface_hub import InferenceClient, login
|
4 |
-
import random
|
5 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFacePipeline
|
6 |
#from langchain.schema import AIMessage, HumanMessage
|
7 |
from langgraph.graph.message import add_messages
|
|
|
8 |
from langgraph.prebuilt import ToolNode, tools_condition
|
9 |
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
|
10 |
-
from
|
11 |
-
import os
|
12 |
import datasets
|
13 |
-
|
14 |
from langgraph.graph import START, StateGraph
|
15 |
-
from
|
16 |
-
from
|
|
|
17 |
|
|
|
18 |
|
19 |
HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
|
20 |
login(token=HUGGINGFACEHUB_API_TOKEN, add_to_git_credential=True)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Load the dataset
|
23 |
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
|
24 |
|
|
|
25 |
# Convert dataset entries into Document objects
|
26 |
docs = [
|
27 |
Document(
|
@@ -36,9 +51,9 @@ docs = [
|
|
36 |
for guest in guest_dataset
|
37 |
]
|
38 |
|
39 |
-
|
40 |
bm25_retriever = BM25Retriever.from_documents(docs)
|
41 |
|
|
|
42 |
def extract_text(query: str) -> str:
|
43 |
"""Retrieves detailed information about gala guests based on their name or relation."""
|
44 |
results = bm25_retriever.invoke(query)
|
@@ -47,18 +62,12 @@ def extract_text(query: str) -> str:
|
|
47 |
else:
|
48 |
return "No matching guest information found."
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
max_new_tokens=512,
|
55 |
-
do_sample=False,
|
56 |
-
repetition_penalty=1.03,
|
57 |
-
timeout=240,
|
58 |
)
|
59 |
|
60 |
-
model = ChatHuggingFace(llm=llm, verbose=True)
|
61 |
-
|
62 |
def predict(message, history):
|
63 |
# Convert Gradio history to LangChain message format
|
64 |
history_langchain_format = []
|
@@ -82,57 +91,8 @@ def predict(message, history):
|
|
82 |
|
83 |
# setup agents
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
func=extract_text,
|
88 |
-
description="Retrieves detailed information about gala guests based on their name or relation."
|
89 |
-
)
|
90 |
-
"""
|
91 |
-
search_tool = DuckDuckGoSearchRun()
|
92 |
-
|
93 |
-
def get_weather_info(location: str) -> str:
|
94 |
-
Fetches dummy weather information for a given location.
|
95 |
-
# Dummy weather data
|
96 |
-
weather_conditions = [
|
97 |
-
{"condition": "Rainy", "temp_c": 15},
|
98 |
-
{"condition": "Clear", "temp_c": 25},
|
99 |
-
{"condition": "Windy", "temp_c": 20}
|
100 |
-
]
|
101 |
-
# Randomly select a weather condition
|
102 |
-
data = random.choice(weather_conditions)
|
103 |
-
return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"
|
104 |
-
|
105 |
-
# Initialize the tool
|
106 |
-
weather_info_tool = Tool(
|
107 |
-
name="get_weather_info",
|
108 |
-
func=get_weather_info,
|
109 |
-
description="Fetches dummy weather information for a given location."
|
110 |
-
)
|
111 |
-
|
112 |
-
|
113 |
-
def get_hub_stats(author: str) -> str:
|
114 |
-
Fetches the most downloaded model from a specific author on the Hugging Face Hub.
|
115 |
-
try:
|
116 |
-
# List models from the specified author, sorted by downloads
|
117 |
-
models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
|
118 |
-
|
119 |
-
if models:
|
120 |
-
model = models[0]
|
121 |
-
return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
|
122 |
-
else:
|
123 |
-
return f"No models found for author {author}."
|
124 |
-
except Exception as e:
|
125 |
-
return f"Error fetching models for {author}: {str(e)}"
|
126 |
-
|
127 |
-
# Initialize the tool
|
128 |
-
hub_stats_tool = Tool(
|
129 |
-
name="get_hub_stats",
|
130 |
-
func=get_hub_stats,
|
131 |
-
description="Fetches the most downloaded model from a specific author on the Hugging Face Hub."
|
132 |
-
)
|
133 |
-
"""
|
134 |
-
#tools = [guest_info_tool, search_tool, weather_info_tool, hub_stats_tool]
|
135 |
-
tools = [guest_info_tool]
|
136 |
chat_with_tools = model.bind_tools(tools)
|
137 |
|
138 |
# Generate the AgentState and Agent graph
|
|
|
1 |
import gradio as gr
|
2 |
from typing import TypedDict, Annotated
|
3 |
from huggingface_hub import InferenceClient, login
|
|
|
4 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFacePipeline
|
5 |
#from langchain.schema import AIMessage, HumanMessage
|
6 |
from langgraph.graph.message import add_messages
|
7 |
+
from langchain.docstore.document import Document
|
8 |
from langgraph.prebuilt import ToolNode, tools_condition
|
9 |
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
|
10 |
+
from langchain_community.retrievers import BM25Retriever
|
|
|
11 |
import datasets
|
12 |
+
import os
|
13 |
from langgraph.graph import START, StateGraph
|
14 |
+
from langchain.tools import Tool
|
15 |
+
from mytools import search_tool, weather_info_tool, hub_stats_tool
|
16 |
+
from dotenv import load_dotenv
|
17 |
|
18 |
+
load_dotenv()
|
19 |
|
20 |
HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
|
21 |
login(token=HUGGINGFACEHUB_API_TOKEN, add_to_git_credential=True)
|
22 |
|
23 |
+
llm = HuggingFaceEndpoint(
|
24 |
+
#repo_id="HuggingFaceH4/zephyr-7b-beta",
|
25 |
+
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct",
|
26 |
+
task="text-generation",
|
27 |
+
max_new_tokens=512,
|
28 |
+
do_sample=False,
|
29 |
+
repetition_penalty=1.03,
|
30 |
+
timeout=240,
|
31 |
+
)
|
32 |
+
|
33 |
+
model = ChatHuggingFace(llm=llm, verbose=True)
|
34 |
+
|
35 |
+
|
36 |
# Load the dataset
|
37 |
guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
|
38 |
|
39 |
+
|
40 |
# Convert dataset entries into Document objects
|
41 |
docs = [
|
42 |
Document(
|
|
|
51 |
for guest in guest_dataset
|
52 |
]
|
53 |
|
|
|
54 |
bm25_retriever = BM25Retriever.from_documents(docs)
|
55 |
|
56 |
+
|
57 |
def extract_text(query: str) -> str:
|
58 |
"""Retrieves detailed information about gala guests based on their name or relation."""
|
59 |
results = bm25_retriever.invoke(query)
|
|
|
62 |
else:
|
63 |
return "No matching guest information found."
|
64 |
|
65 |
+
guest_info_tool = Tool(
|
66 |
+
name="guest_info_retriever",
|
67 |
+
func=extract_text,
|
68 |
+
description="Retrieves detailed information about gala guests based on their name or relation."
|
|
|
|
|
|
|
|
|
69 |
)
|
70 |
|
|
|
|
|
71 |
def predict(message, history):
|
72 |
# Convert Gradio history to LangChain message format
|
73 |
history_langchain_format = []
|
|
|
91 |
|
92 |
# setup agents
|
93 |
|
94 |
+
tools = [guest_info_tool, search_tool, weather_info_tool, hub_stats_tool]
|
95 |
+
#tools = [guest_info_tool]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
chat_with_tools = model.bind_tools(tools)
|
97 |
|
98 |
# Generate the AgentState and Agent graph
|
mytools.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.tools import Tool
|
2 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
3 |
+
import random
|
4 |
+
from huggingface_hub import list_models
|
5 |
+
|
6 |
+
|
7 |
+
search_tool = DuckDuckGoSearchRun()
|
8 |
+
|
9 |
+
def get_weather_info(location: str) -> str:
|
10 |
+
"""Fetches dummy weather information for a given location."""
|
11 |
+
# Dummy weather data
|
12 |
+
weather_conditions = [
|
13 |
+
{"condition": "Rainy", "temp_c": 15},
|
14 |
+
{"condition": "Clear", "temp_c": 25},
|
15 |
+
{"condition": "Windy", "temp_c": 20}
|
16 |
+
]
|
17 |
+
# Randomly select a weather condition
|
18 |
+
data = random.choice(weather_conditions)
|
19 |
+
return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"
|
20 |
+
|
21 |
+
# Initialize the tool
|
22 |
+
weather_info_tool = Tool(
|
23 |
+
name="get_weather_info",
|
24 |
+
func=get_weather_info,
|
25 |
+
description="Fetches dummy weather information for a given location."
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
def get_hub_stats(author: str) -> str:
|
30 |
+
"""Fetches the most downloaded model from a specific author on the Hugging Face Hub."""
|
31 |
+
try:
|
32 |
+
# List models from the specified author, sorted by downloads
|
33 |
+
models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
|
34 |
+
|
35 |
+
if models:
|
36 |
+
model = models[0]
|
37 |
+
return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
|
38 |
+
else:
|
39 |
+
return f"No models found for author {author}."
|
40 |
+
except Exception as e:
|
41 |
+
return f"Error fetching models for {author}: {str(e)}"
|
42 |
+
|
43 |
+
# Initialize the tool
|
44 |
+
hub_stats_tool = Tool(
|
45 |
+
name="get_hub_stats",
|
46 |
+
func=get_hub_stats,
|
47 |
+
description="Fetches the most downloaded model from a specific author on the Hugging Face Hub."
|
48 |
+
)
|