sam522 commited on
Commit
d5f6ff8
·
1 Parent(s): 0bb29e7
Files changed (2) hide show
  1. app.py +7 -2
  2. retriever.py +0 -11
app.py CHANGED
@@ -13,7 +13,6 @@ import datasets
13
  from langchain.docstore.document import Document
14
  from langgraph.graph import START, StateGraph
15
  from langchain_community.retrievers import BM25Retriever
16
- from retriever import extract_text
17
 
18
  HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
19
  login(token=HUGGINGFACEHUB_API_TOKEN)
@@ -38,6 +37,13 @@ docs = [
38
 
39
  bm25_retriever = BM25Retriever.from_documents(docs)
40
 
 
 
 
 
 
 
 
41
 
42
  llm = HuggingFaceEndpoint(
43
  repo_id="HuggingFaceH4/zephyr-7b-beta",
@@ -76,7 +82,6 @@ guest_info_tool = Tool(
76
  tools = [guest_info_tool]
77
  chat_with_tools = model.bind_tools(tools)
78
 
79
-
80
  # Generate the AgentState and Agent graph
81
  class AgentState(TypedDict):
82
  messages: Annotated[list[AnyMessage], add_messages]
 
13
  from langchain.docstore.document import Document
14
  from langgraph.graph import START, StateGraph
15
  from langchain_community.retrievers import BM25Retriever
 
16
 
17
  HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"]
18
  login(token=HUGGINGFACEHUB_API_TOKEN)
 
37
 
38
  bm25_retriever = BM25Retriever.from_documents(docs)
39
 
40
+ def extract_text(query: str) -> str:
41
+ """Retrieves detailed information about gala guests based on their name or relation."""
42
+ results = bm25_retriever.invoke(query)
43
+ if results:
44
+ return "\n\n".join([doc.page_content for doc in results[:3]])
45
+ else:
46
+ return "No matching guest information found."
47
 
48
  llm = HuggingFaceEndpoint(
49
  repo_id="HuggingFaceH4/zephyr-7b-beta",
 
82
  tools = [guest_info_tool]
83
  chat_with_tools = model.bind_tools(tools)
84
 
 
85
  # Generate the AgentState and Agent graph
86
  class AgentState(TypedDict):
87
  messages: Annotated[list[AnyMessage], add_messages]
retriever.py DELETED
@@ -1,11 +0,0 @@
1
- from langchain_community.retrievers import BM25Retriever
2
- from langchain.tools import Tool
3
-
4
- def extract_text(query: str) -> str:
5
- """Retrieves detailed information about gala guests based on their name or relation."""
6
- results = bm25_retriever.invoke(query)
7
- if results:
8
- return "\n\n".join([doc.page_content for doc in results[:3]])
9
- else:
10
- return "No matching guest information found."
11
-