import gradio as gr from huggingface_hub import InferenceClient, login import random from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFacePipeline from langchain.schema import AIMessage, HumanMessage from langchain.tools import Tool import os import datasets from langchain.docstore.document import Document from langchain_community.retrievers import BM25Retriever from retriever import extract_text HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"] login(token=HUGGINGFACEHUB_API_TOKEN) # Load the dataset guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train") # Convert dataset entries into Document objects docs = [ Document( page_content="\n".join([ f"Name: {guest['name']}", f"Relation: {guest['relation']}", f"Description: {guest['description']}", f"Email: {guest['email']}" ]), metadata={"name": guest["name"]} ) for guest in guest_dataset ] bm25_retriever = BM25Retriever.from_documents(docs) llm = HuggingFaceEndpoint( repo_id="HuggingFaceH4/zephyr-7b-beta", task="text-generation", max_new_tokens=512, do_sample=False, repetition_penalty=1.03, ) model = ChatHuggingFace(llm=llm, verbose=True) def predict(message, history): history_langchain_format = [] for msg in history: if msg['role'] == "user": history_langchain_format.append(HumanMessage(content=msg['content'])) elif msg['role'] == "assistant": history_langchain_format.append(AIMessage(content=msg['content'])) history_langchain_format.append(HumanMessage(content=message)) gpt_response = model.invoke(history_langchain_format) return gpt_response.content demo = gr.ChatInterface( predict, type="messages" ) # setup agents guest_info_tool = Tool( name="guest_info_retriever", func=extract_text, description="Retrieves detailed information about gala guests based on their name or relation." ) demo.launch()