import gradio as gr from typing import TypedDict, Annotated from huggingface_hub import InferenceClient, login import random from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFacePipeline #from langchain.schema import AIMessage, HumanMessage from langgraph.graph.message import add_messages from langgraph.prebuilt import ToolNode, tools_condition from langchain_core.messages import AnyMessage, HumanMessage, AIMessage from langchain.tools import Tool import os import datasets from langchain.docstore.document import Document from langgraph.graph import START, StateGraph from langchain_community.retrievers import BM25Retriever from langchain_community.tools import DuckDuckGoSearchRun HUGGINGFACEHUB_API_TOKEN = os.environ["HUGGINGFACEHUB_API_TOKEN"] login(token=HUGGINGFACEHUB_API_TOKEN, add_to_git_credential=True) # Load the dataset guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train") # Convert dataset entries into Document objects docs = [ Document( page_content="\n".join([ f"Name: {guest['name']}", f"Relation: {guest['relation']}", f"Description: {guest['description']}", f"Email: {guest['email']}" ]), metadata={"name": guest["name"]} ) for guest in guest_dataset ] bm25_retriever = BM25Retriever.from_documents(docs) def extract_text(query: str) -> str: """Retrieves detailed information about gala guests based on their name or relation.""" results = bm25_retriever.invoke(query) if results: return "\n\n".join([doc.page_content for doc in results[:3]]) else: return "No matching guest information found." llm = HuggingFaceEndpoint( #repo_id="HuggingFaceH4/zephyr-7b-beta", repo_id="Qwen/Qwen2.5-Coder-32B-Instruct", task="text-generation", max_new_tokens=512, do_sample=False, repetition_penalty=1.03, timeout=240, ) model = ChatHuggingFace(llm=llm, verbose=True) """ def predict(message, history): history_langchain_format = [] for msg in history: if msg['role'] == "user": history_langchain_format.append(HumanMessage(content=msg['content'])) elif msg['role'] == "assistant": history_langchain_format.append(AIMessage(content=msg['content'])) history_langchain_format.append(HumanMessage(content=message)) gpt_response = model.invoke(history_langchain_format) return gpt_response.content """ def predict(message, history): # Convert Gradio history to LangChain message format history_langchain_format = [] for msg in history: if msg['role'] == "user": history_langchain_format.append(HumanMessage(content=msg['content'])) elif msg['role'] == "assistant": history_langchain_format.append(AIMessage(content=msg['content'])) # Add new user message history_langchain_format.append(HumanMessage(content=message)) # Invoke Alfred agent with full message history response = alfred.invoke( input={"messages": history_langchain_format}, config={"recursion_limit": 100} ) # Extract final assistant message return response["messages"][-1].content # setup agents guest_info_tool = Tool( name="guest_info_retriever", func=extract_text, description="Retrieves detailed information about gala guests based on their name or relation." ) search_tool = DuckDuckGoSearchRun() def get_weather_info(location: str) -> str: """Fetches dummy weather information for a given location.""" # Dummy weather data weather_conditions = [ {"condition": "Rainy", "temp_c": 15}, {"condition": "Clear", "temp_c": 25}, {"condition": "Windy", "temp_c": 20} ] # Randomly select a weather condition data = random.choice(weather_conditions) return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C" # Initialize the tool weather_info_tool = Tool( name="get_weather_info", func=get_weather_info, description="Fetches dummy weather information for a given location." ) def get_hub_stats(author: str) -> str: """Fetches the most downloaded model from a specific author on the Hugging Face Hub.""" try: # List models from the specified author, sorted by downloads models = list(list_models(author=author, sort="downloads", direction=-1, limit=1)) if models: model = models[0] return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads." else: return f"No models found for author {author}." except Exception as e: return f"Error fetching models for {author}: {str(e)}" # Initialize the tool hub_stats_tool = Tool( name="get_hub_stats", func=get_hub_stats, description="Fetches the most downloaded model from a specific author on the Hugging Face Hub." ) tools = [guest_info_tool, search_tool, weather_info_tool, hub_stats_tool] chat_with_tools = model.bind_tools(tools) # Generate the AgentState and Agent graph class AgentState(TypedDict): messages: Annotated[list[AnyMessage], add_messages] def assistant(state: AgentState): return { "messages": [chat_with_tools.invoke(state["messages"])], } ## The graph builder = StateGraph(AgentState) # Define nodes: these do the work builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) # Define edges: these determine how the control flow moves builder.add_edge(START, "assistant") builder.add_conditional_edges( "assistant", # If the latest message requires a tool, route to tools # Otherwise, provide a direct response tools_condition, ) builder.add_edge("tools", "assistant") alfred = builder.compile() demo = gr.ChatInterface( predict, type="messages" ) demo.launch()