Spaces:
Sleeping
Sleeping
File size: 21,804 Bytes
38df4e4 7979b63 38df4e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
import numpy as np
import spacy
import tempfile
import glob
import yt_dlp
import shutil
import cv2
import librosa
import wikipedia
from typing import TypedDict, List, Optional, Dict, Any
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import WikipediaLoader
from langgraph.graph import START, END, StateGraph
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage # If you are using it
from langchain_community.retrievers import BM25Retriever # If you are using it
from langgraph.prebuilt import ToolNode, tools_condition # If you are using it
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.schema import Document
from transformers import BlipProcessor, BlipForQuestionAnswering, pipeline
from io import BytesIO
from sentence_transformers import SentenceTransformer
import os
import re
from PIL import Image # This is correctly imported, but was being used incorrectly
import numpy as np
from collections import Counter
import torch
from transformers import BlipProcessor, BlipForQuestionAnswering, pipeline
from typing import TypedDict, List, Optional, Dict, Any, Literal, Tuple
from langgraph.graph import StateGraph, START, END
from langchain.docstore.document import Document
nlp = spacy.load("en_core_web_sm")
# Define file extension sets for each category
PICTURE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp'}
AUDIO_EXTENSIONS = {'.mp3', '.wav', '.aac', '.flac', '.ogg', '.m4a', '.wma'}
CODE_EXTENSIONS = {'.py', '.js', '.java', '.cpp', '.c', '.cs', '.rb', '.go', '.php', '.html', '.css', '.ts'}
SPREADSHEET_EXTENSIONS = {
'.xls', '.xlsx', '.xlsm', '.xlsb', '.xlt', '.xltx', '.xltm',
'.ods', '.ots', '.csv', '.tsv', '.sxc', '.stc', '.dif', '.gsheet',
'.numbers', '.numbers-tef', '.nmbtemplate', '.fods', '.123', '.wk1', '.wk2',
'.wks', '.wku', '.wr1', '.gnumeric', '.gnm', '.xml', '.pmvx', '.pmdx',
'.pmv', '.uos', '.txt'
}
def get_file_type(filename: str) -> str:
if not filename or '.' not in filename or filename == '':
return ''
ext = filename.lower().rsplit('.', 1)[-1]
dot_ext = f'.{ext}'
if dot_ext in PICTURE_EXTENSIONS:
return 'picture'
elif dot_ext in AUDIO_EXTENSIONS:
return 'audio'
elif dot_ext in CODE_EXTENSIONS:
return 'code'
elif dot_ext in SPREADSHEET_EXTENSIONS:
return 'spreadsheet'
else:
return 'unknown'
def write_bytes_to_temp_dir(file_bytes: bytes, file_name: str) -> str:
"""
Writes bytes to a file in the system temporary directory using the provided file_name.
Returns the full path to the saved file.
The file will persist until manually deleted or the OS cleans the temp directory.
"""
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, file_name)
with open(file_path, 'wb') as f:
f.write(file_bytes)
print(f"File written to: {file_path}")
return file_path
# 1. Define the State type
class State(TypedDict, total=False):
question: str
task_id: str
input_file: bytes
file_type: str
context: List[Document] # Using LangChain's Document class
file_path: Optional[str]
youtube_url: Optional[str]
answer: Optional[str]
frame_answers: Optional[list]
next: Optional[str] # Added to track the next node
# --- LLM pipeline for general questions ---
llm_pipe = pipeline("text-generation",
#model="meta-llama/Llama-3.3-70B-Instruct",
#model="meta-llama/Meta-Llama-3-8B-Instruct",
#model="Qwen/Qwen2-7B-Instruct",
#model="microsoft/Phi-4-reasoning",
model="microsoft/Phi-3-mini-4k-instruct",
device_map="auto",
#device_map={ "": 0 }, # "" means the whole model
#max_memory={0: "10GiB"},
torch_dtype="auto",
max_new_tokens=256)
# Speech-to-text pipeline
asr_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
device=-1
#device_map={"", 0},
#max_memory = {0: "4.5GiB"},
#device_map="auto"
)
# --- Your BLIP VQA setup ---
#device = "cuda" if torch.cuda.is_available() else "cpu"
device = "cpu"
vqa_model_name = "Salesforce/blip-vqa-base"
processor_vqa = BlipProcessor.from_pretrained(vqa_model_name)
# Attempt to load model to GPU; fall back to CPU if OOM
try:
model_vqa = BlipForQuestionAnswering.from_pretrained(vqa_model_name).to(device)
except torch.cuda.OutOfMemoryError:
print("WARNING: Loading model to CPU due to insufficient GPU memory.")
device = "cpu" # Switch device to CPU
model_vqa = BlipForQuestionAnswering.from_pretrained(vqa_model_name).to(device)
# --- Helper: Answer question on a single frame ---
def answer_question_on_frame(image_path, question):
# Fixed: Properly use the PIL Image module
image = Image.open(image_path).convert('RGB')
inputs = processor_vqa(image, question, return_tensors="pt").to(device)
out = model_vqa.generate(**inputs)
answer = processor_vqa.decode(out[0], skip_special_tokens=True)
return answer
# --- Helper: Answer question about the whole video ---
def answer_video_question(frames_dir, question):
valid_exts = ('.jpg', '.jpeg', '.png')
# Check if directory exists
if not os.path.exists(frames_dir):
return {
"most_common_answer": "No frames found to analyze.",
"all_answers": [],
"answer_counts": Counter()
}
frame_files = [os.path.join(frames_dir, f) for f in os.listdir(frames_dir)
if f.lower().endswith(valid_exts)]
# Sort frames properly by number
def get_frame_number(filename):
match = re.search(r'(\d+)', os.path.basename(filename))
return int(match.group(1)) if match else 0
frame_files = sorted(frame_files, key=get_frame_number)
if not frame_files:
return {
"most_common_answer": "No valid image frames found.",
"all_answers": [],
"answer_counts": Counter()
}
answers = []
for frame_path in frame_files:
try:
ans = answer_question_on_frame(frame_path, question)
answers.append(ans)
print(f"Processed frame: {os.path.basename(frame_path)}, Answer: {ans}")
except Exception as e:
print(f"Error processing frame {frame_path}: {str(e)}")
if not answers:
return {
"most_common_answer": "Could not analyze any frames successfully.",
"all_answers": [],
"answer_counts": Counter()
}
counted = Counter(answers)
most_common_answer, freq = counted.most_common(1)[0]
return {
"most_common_answer": most_common_answer,
"all_answers": answers,
"answer_counts": counted
}
def download_youtube_video(url, output_dir='/content/video/', output_filename='downloaded_video.mp4'):
# Ensure the output directory exists
os.makedirs(output_dir, exist_ok=True)
# Delete all files in the output directory
files = glob.glob(os.path.join(output_dir, '*'))
for f in files:
try:
os.remove(f)
except Exception as e:
print(f"Error deleting {f}: {str(e)}")
# Set output path for yt-dlp
output_path = os.path.join(output_dir, output_filename)
ydl_opts = {
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
'outtmpl': output_path,
'quiet': True,
'merge_output_format': 'mp4', # Ensures merged output is mp4
'postprocessors': [{
'key': 'FFmpegVideoConvertor',
'preferedformat': 'mp4', # Recode if needed
}]
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
return output_path
# --- Helper: Extract frames from video ---
def extract_frames(video_path, output_dir, frame_interval_seconds=10):
# --- Clean output directory before extracting new frames ---
if os.path.exists(output_dir):
for filename in os.listdir(output_dir):
file_path = os.path.join(output_dir, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')
else:
os.makedirs(output_dir, exist_ok=True)
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return False
fps = cap.get(cv2.CAP_PROP_FPS)
frame_interval = int(fps * frame_interval_seconds)
count = 0
saved = 0
while True:
ret, frame = cap.read()
if not ret:
break
if count % frame_interval == 0:
frame_filename = os.path.join(output_dir, f"frame_{count:06d}.jpg")
cv2.imwrite(frame_filename, frame)
saved += 1
count += 1
cap.release()
print(f"Extracted {saved} frames.")
return saved > 0
except Exception as e:
print(f"Exception during frame extraction: {e}")
return False
def image_qa(image_path: str, question: str, model_name: str = vqa_model_name) -> str:
"""
Answers questions about images using Hugging Face's VQA pipeline.
Args:
image_path: Path to local image file or URL
question: Natural language question about the image
model_name: Pretrained VQA model (default: good general-purpose model)
Returns:
str: The model's best answer
"""
# Create VQA pipeline with specified model
vqa_pipeline = pipeline("visual-question-answering", model=model_name)
# Get predictions (automatically handles local files/URLs)
results = vqa_pipeline(image=image_path, question=question, top_k=1)
# Return top answer
return results[0]['answer']
def router(state: Dict[str, Any]) -> str:
"""Determine the next node based on whether the question contains a YouTube URL or references Wikipedia."""
question = state.get('question', '')
# Pattern for Wikipedia and similar sources
wiki_pattern = r"(wikipedia\.org|wiki|encyclopedia|britannica\.com|encyclop[a|æ]dia)"
has_wiki = re.search(wiki_pattern, question, re.IGNORECASE) is not None
# Pattern for YouTube
yt_pattern = r"(https?://)?(www\.)?(youtube\.com|youtu\.be)/[^\s]+"
has_youtube = re.search(yt_pattern, question) is not None
# Check for image
has_image = state.get('file_type') == 'picture'
# Check for audio
has_audio = state.get('file_type') == 'audio'
print(f"Has Wikipedia reference: {has_wiki}")
print(f"Has YouTube link: {has_youtube}")
print(f"Has picture file: {has_image}")
print(f"Has audio file: {has_audio}")
if has_wiki:
return "retrieve"
elif has_youtube:
# Store the extracted YouTube URL in the state
url_match = re.search(r"(https?://[^\s]+)", question)
if url_match:
state['youtube_url'] = url_match.group(0)
return "video"
elif has_image:
return "image"
elif has_audio:
return "audio"
else:
return "llm"
# --- Node Implementation ---
def node_image(state: Dict[str, Any]) -> Dict[str, Any]:
"""Router node that decides which node to go to next."""
print("Running node_image")
# Add the next state to the state dict
img = Image.open(state['file_path'])
state['answer'] = image_qa(state['file_path'], state['question'])
return state
def node_decide(state: Dict[str, Any]) -> Dict[str, Any]:
"""Router node that decides which node to go to next."""
print("Running node_decide")
# Add the next state to the state dict
state["next"] = router(state)
print(f"Routing to: {state['next']}")
return state
def node_video(state: Dict[str, Any]) -> Dict[str, Any]:
print("Running node_video")
youtube_url = state.get('youtube_url')
if not youtube_url:
state['answer'] = "No YouTube URL found in the question."
return state
question = state['question']
# Extract the actual question part (remove the URL)
question_text = re.sub(r'https?://[^\s]+', '', question).strip()
if not question_text.endswith('?'):
question_text += '?'
video_file = download_youtube_video(youtube_url)
if not video_file or not os.path.exists(video_file):
state['answer'] = "Failed to download the video."
return state
frames_dir = "/tmp/frames"
os.makedirs(frames_dir, exist_ok=True)
success = extract_frames(video_path=video_file, output_dir=frames_dir, frame_interval_seconds=10)
if not success:
state['answer'] = "Failed to extract frames from the video."
return state
result = answer_video_question(frames_dir, question_text)
state['answer'] = result['most_common_answer']
state['frame_answers'] = result['all_answers']
# Create Document objects for each frame analysis
frame_documents = []
for i, ans in enumerate(result['all_answers']):
doc = Document(
page_content=f"Frame {i}: {ans}",
metadata={"frame_number": i, "source": "video_analysis"}
)
frame_documents.append(doc)
# Add documents to state if not already present
if 'context' not in state:
state['context'] = []
state['context'].extend(frame_documents)
print(f"Video answer: {state['answer']}")
return state
def node_audio_rag(state: Dict[str, Any]) -> Dict[str, Any]:
print(f"Processing audio file: {state['file_path']}")
try:
# Step 1: Transcribe audio
audio, sr = librosa.load(state['file_path'], sr=16000)
asr_result = asr_pipe({"raw": audio, "sampling_rate": sr})
audio_transcript = asr_result['text']
print(f"Audio transcript: {audio_transcript}")
# Step 2: Store ONLY the transcript in the vector store
transcript_doc = [Document(page_content=audio_transcript)]
embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-large-en-v1.5')
vector_db = FAISS.from_documents(transcript_doc, embedding=embeddings)
# Step 3: Retrieve relevant docs for the user's question
question = state['question']
similar_docs = vector_db.similarity_search(question, k=1) # Only one doc in store
retrieved_context = "\n".join([doc.page_content for doc in similar_docs])
# Step 4: Augment prompt and generate answer
prompt = (
f"Use the following context to answer the question.\n"
f"Context:\n{retrieved_context}\n\n"
f"Question: {question}\nAnswer:"
)
llm_response = llm_pipe(prompt)
state['answer'] = llm_response[0]['generated_text']
except Exception as e:
error_msg = f"Audio processing error: {str(e)}"
print(error_msg)
state['answer'] = error_msg
return state
def node_llm(state: Dict[str, Any]) -> Dict[str, Any]:
print("Running node_llm")
question = state['question']
# Optionally add context from state (e.g., Wikipedia/Wikidata content)
context_text = ""
if 'article_content' in state and state['article_content']:
context_text = f"\n\nBackground Information:\n{state['article_content']}\n"
elif 'context' in state and state['context']:
context_text = "\n\n".join([doc.page_content for doc in state['context']])
# Compose a detailed prompt
prompt = (
"You are an expert researcher. Answer the user's question as accurately as possible. "
"If the text appears to be scrambled, try to unscramble the text for the user"
"If the information is incomplete or ambiguous, provide your best estimate based on the available evidence, and clearly explain any assumptions or reasoning you use. "
"If the answer requires multiple steps or deeper analysis, break down the question into sub-questions and answer them step by step, citing the relevant context for each step.\n\n"
f"Question: {question}"
f"{context_text}\n"
"Answer:"
)
# Add document to state for traceability
query_doc = Document(
page_content=prompt,
metadata={"source": "llm_prompt"}
)
if 'context' not in state:
state['context'] = []
state['context'].append(query_doc)
try:
result = llm_pipe(prompt)
state['answer'] = result[0]['generated_text']
except Exception as e:
print(f"Error in LLM processing: {str(e)}")
state['answer'] = f"An error occurred while processing your question: {str(e)}"
print(f"LLM answer: {state['answer']}")
return state
# --- Define the edge condition function ---
def get_next_node(state: Dict[str, Any]) -> str:
"""Get the next node from the state."""
return state["next"]
# 2. Improved Wikipedia Retrieval Node
def extract_keywords(question: str) -> List[str]:
doc = nlp(question)
keywords = [token.text for token in doc if token.pos_ in ("PROPN", "NOUN")] # Extract proper nouns and nouns
return keywords
def extract_entities(question: str) -> List[str]:
doc = nlp(question)
entities = [ent.text for ent in doc.ents]
return entities if entities else [token.text for token in doc if token.pos_ in ("PROPN", "NOUN")]
def retrieve(state: State) -> dict:
keywords = extract_entities(state["question"])
query = " ".join(keywords)
search_results = wikipedia.search(query)
selected_page = search_results[0] if search_results else None
if selected_page:
loader = WikipediaLoader(
query=selected_page,
lang="en",
load_max_docs=1,
doc_content_chars_max=100000,
load_all_available_meta=True
)
docs = loader.load()
# Chunk the article for finer retrieval
from langchain.text_splitter import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)
all_chunks = []
for doc in docs:
chunks = splitter.split_text(doc.page_content)
all_chunks.extend([Document(page_content=chunk) for chunk in chunks])
# Optionally: re-rank or filter chunks here
return {"context": all_chunks}
else:
return {"context": []}
# 3. Prompt Template for General QA
prompt = PromptTemplate(
input_variables=["question", "context"],
template=(
"You are an expert researcher. Given the following context from Wikipedia, answer the user's question as accurately as possible. "
"If the text appears to be scrambled, try to unscramble the text for the user"
"If the information is incomplete or ambiguous, provide your best estimate based on the available evidence, and clearly explain any assumptions or reasoning you use. "
"If the answer requires multiple steps or deeper analysis, break down the question into sub-questions and answer them step by step, citing the relevant context for each step."
"Context:\n{context}\n\n"
"Question: {question}\n\n"
"Best Estimate Answer:"
)
)
"""
def generate(state: State) -> dict:
# Concatenate all context documents into a single string
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
# Format the prompt for the LLM
prompt_str = prompt.format(question=state["question"], context=docs_content)
# Generate answer
response = llm.invoke(prompt_str)
return {"answer": response}
"""
def generate(state: dict) -> dict:
# Concatenate all context documents into a single string
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
# Format the prompt for the LLM
prompt_str = prompt.format(question=state["question"], context=docs_content)
# Generate answer using Hugging Face pipeline
response = llm_pipe(prompt_str)
# Extract generated text
answer = response[0]["generated_text"]
return {"answer": answer}
# Create the StateGraph
graph = StateGraph(State)
# Add nodes
graph.add_node("decide", node_decide)
graph.add_node("video", node_video)
graph.add_node("llm", node_llm)
graph.add_node("retrieve", retrieve)
graph.add_node("generate", generate)
graph.add_node("image", node_image)
graph.add_node("audio", node_audio_rag)
# Add edge from START to decide
graph.add_edge(START, "decide")
graph.add_edge("retrieve", "generate")
# Add conditional edges from decide to video or llm based on question
graph.add_conditional_edges(
"decide",
get_next_node,
{
"video": "video",
"llm": "llm",
"retrieve": "retrieve",
"image": "image",
"audio": "audio"
}
)
# Add edges from video and llm to END to terminate the graph
graph.add_edge("video", END)
graph.add_edge("llm", END)
graph.add_edge("generate", END)
graph.add_edge("image", END)
graph.add_edge("audio", END)
# Compile the graph
agent = graph.compile()
# --- Usage Example ---
def intelligent_agent(state: State) -> str:
"""Process a question using the appropriate pipeline based on content."""
#state = State(question= question)
try:
final_state = agent.invoke(state)
return final_state.get('answer', "No answer found.")
except Exception as e:
print(f"Error in agent execution: {str(e)}")
return f"An error occurred: {str(e)}"
|