Samuel Thomas
autotoken
ebdd994
raw
history blame
27.5 kB
import numpy as np
import spacy
import tempfile
import glob
import yt_dlp
import shutil
import cv2
import librosa
import wikipedia
from typing import TypedDict, List, Optional, Dict, Any
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplate
from langchain_community.document_loaders import WikipediaLoader
from langgraph.graph import START, END, StateGraph
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage # If you are using it
from langchain_community.retrievers import BM25Retriever # If you are using it
from langgraph.prebuilt import ToolNode, tools_condition # If you are using it
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.schema import Document
from transformers import BlipProcessor, BlipForQuestionAnswering, pipeline
from io import BytesIO
from sentence_transformers import SentenceTransformer
from transformers import RagRetriever, RagTokenizer, RagSequenceForGeneration
from transformers import AutoTokenizer, AutoModelWithLMHead
import os
import re
from PIL import Image # This is correctly imported, but was being used incorrectly
import numpy as np
from collections import Counter
import torch
from transformers import BlipProcessor, BlipForQuestionAnswering, pipeline
from typing import TypedDict, List, Optional, Dict, Any, Literal, Tuple
from langgraph.graph import StateGraph, START, END
from langchain.docstore.document import Document
nlp = spacy.load("en_core_web_sm")
# Define file extension sets for each category
PICTURE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp'}
AUDIO_EXTENSIONS = {'.mp3', '.wav', '.aac', '.flac', '.ogg', '.m4a', '.wma'}
CODE_EXTENSIONS = {'.py', '.js', '.java', '.cpp', '.c', '.cs', '.rb', '.go', '.php', '.html', '.css', '.ts'}
SPREADSHEET_EXTENSIONS = {
'.xls', '.xlsx', '.xlsm', '.xlsb', '.xlt', '.xltx', '.xltm',
'.ods', '.ots', '.csv', '.tsv', '.sxc', '.stc', '.dif', '.gsheet',
'.numbers', '.numbers-tef', '.nmbtemplate', '.fods', '.123', '.wk1', '.wk2',
'.wks', '.wku', '.wr1', '.gnumeric', '.gnm', '.xml', '.pmvx', '.pmdx',
'.pmv', '.uos', '.txt'
}
def get_file_type(filename: str) -> str:
if not filename or '.' not in filename or filename == '':
return ''
ext = filename.lower().rsplit('.', 1)[-1]
dot_ext = f'.{ext}'
if dot_ext in PICTURE_EXTENSIONS:
return 'picture'
elif dot_ext in AUDIO_EXTENSIONS:
return 'audio'
elif dot_ext in CODE_EXTENSIONS:
return 'code'
elif dot_ext in SPREADSHEET_EXTENSIONS:
return 'spreadsheet'
else:
return 'unknown'
def write_bytes_to_temp_dir(file_bytes: bytes, file_name: str) -> str:
"""
Writes bytes to a file in the system temporary directory using the provided file_name.
Returns the full path to the saved file.
The file will persist until manually deleted or the OS cleans the temp directory.
"""
temp_dir = "/tmp" # /tmp is always writable in Hugging Face Spaces
os.makedirs(temp_dir, exist_ok=True)
file_path = os.path.join(temp_dir, file_name)
with open(file_path, 'wb') as f:
f.write(file_bytes)
print(f"File written to: {file_path}")
return file_path
# 1. Define the State type
class State(TypedDict, total=False):
question: str
task_id: str
input_file: Optional[bytes]
file_type: Optional[str]
context: List[Document] # Using LangChain's Document class
file_path: Optional[str]
youtube_url: Optional[str]
answer: Optional[str]
frame_answers: Optional[list]
next: Optional[str] # Added to track the next node
# --- LLM pipeline for general questions ---
llm_pipe = pipeline(
"text-generation",
model="microsoft/Phi-3-mini-4k-instruct",
device_map="auto",
torch_dtype="auto",
max_new_tokens=256,
trust_remote_code=True
)
# Initialize RAG components
tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base", trust_remote_code=True)
retriever = RagRetriever.from_pretrained(
"facebook/rag-token-base",
index_name="exact", # or "legacy" for legacy FAISS index
use_dummy_dataset=False, # set to False and download the full index for real Wikipedia retrieval
trust_remote_code=True, # Trust remote code for dataset loading
dataset_revision="main", # Specify a fixed revision
dataset="wiki_dpr", # Explicitly specify dataset name
)
rag_model = RagSequenceForGeneration.from_pretrained(
"facebook/rag-token-base",
retriever=retriever,
trust_remote_code=True
)
# Speech-to-text pipeline
asr_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
device="auto"
)
# --- BLIP VQA setup ---
device = "cuda" if torch.cuda.is_available() else "cpu"
vqa_model_name = "Salesforce/blip-vqa-base"
processor_vqa = BlipProcessor.from_pretrained(vqa_model_name)
# Attempt to load model to GPU; fall back to CPU if OOM
try:
model_vqa = BlipForQuestionAnswering.from_pretrained(vqa_model_name).to(device)
except torch.cuda.OutOfMemoryError:
print("WARNING: Loading model to CPU due to insufficient GPU memory.")
device = "cpu" # Switch device to CPU
model_vqa = BlipForQuestionAnswering.from_pretrained(vqa_model_name).to(device)
# --- Helper functions ---
def ensure_final_answer_format(answer_text: str) -> str:
"""Ensure the answer ends with FINAL ANSWER: format"""
# Check if the answer already contains a FINAL ANSWER section
if "FINAL ANSWER:" in answer_text:
# Extract everything after FINAL ANSWER:
final_answer_part = answer_text.split("FINAL ANSWER:", 1)[1].strip()
return f"FINAL ANSWER: {final_answer_part}"
else:
# If no FINAL ANSWER section exists, wrap the entire answer
return f"FINAL ANSWER: {answer_text.strip()}"
def extract_entities(text: str) -> List[str]:
"""Extract key entities from text using spaCy if available, or regex fallback"""
if nlp:
# Using spaCy for better entity extraction
doc = nlp(text)
entities = [ent.text for ent in doc.ents]
keywords = [token.text for token in doc if token.pos_ in ("PROPN", "NOUN")]
return entities if entities else keywords
else:
# Simple fallback using regex to extract potential keywords
words = text.lower().split()
stopwords = ["what", "who", "when", "where", "why", "how", "is", "are", "the", "a", "an", "of", "in", "on", "at"]
keywords = [word for word in words if word not in stopwords and len(word) > 2]
return keywords
def answer_question_on_frame(image_path, question):
"""Answer a question about a single video frame using BLIP"""
try:
image = Image.open(image_path).convert('RGB')
inputs = processor_vqa(image, question, return_tensors="pt").to(device)
out = model_vqa.generate(**inputs)
answer = processor_vqa.decode(out[0], skip_special_tokens=True)
return answer
except Exception as e:
print(f"Error processing frame {image_path}: {str(e)}")
return "Error processing this frame"
def answer_video_question(frames_dir, question):
"""Answer a question about a video by analyzing extracted frames"""
valid_exts = ('.jpg', '.jpeg', '.png')
# Check if directory exists
if not os.path.exists(frames_dir):
return {
"most_common_answer": "No frames found to analyze.",
"all_answers": [],
"answer_counts": Counter()
}
frame_files = [os.path.join(frames_dir, f) for f in os.listdir(frames_dir)
if f.lower().endswith(valid_exts)]
# Sort frames properly by number
def get_frame_number(filename):
match = re.search(r'(\d+)', os.path.basename(filename))
return int(match.group(1)) if match else 0
frame_files = sorted(frame_files, key=get_frame_number)
if not frame_files:
return {
"most_common_answer": "No valid image frames found.",
"all_answers": [],
"answer_counts": Counter()
}
answers = []
for frame_path in frame_files:
try:
ans = answer_question_on_frame(frame_path, question)
answers.append(ans)
print(f"Processed frame: {os.path.basename(frame_path)}, Answer: {ans}")
except Exception as e:
print(f"Error processing frame {frame_path}: {str(e)}")
if not answers:
return {
"most_common_answer": "Could not analyze any frames successfully.",
"all_answers": [],
"answer_counts": Counter()
}
counted = Counter(answers)
most_common_answer, freq = counted.most_common(1)[0]
return {
"most_common_answer": most_common_answer,
"all_answers": answers,
"answer_counts": counted
}
def download_youtube_video(url, output_dir='/tmp/video/', output_filename='downloaded_video.mp4'):
"""Download a YouTube video using yt-dlp"""
# Ensure the output directory exists
os.makedirs(output_dir, exist_ok=True)
# Delete all files in the output directory
files = glob.glob(os.path.join(output_dir, '*'))
for f in files:
try:
os.remove(f)
except Exception as e:
print(f"Error deleting {f}: {str(e)}")
# Set output path for yt-dlp
output_path = os.path.join(output_dir, output_filename)
try:
ydl_opts = {
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
'outtmpl': output_path,
'quiet': True,
'merge_output_format': 'mp4', # Ensures merged output is mp4
'postprocessors': [{
'key': 'FFmpegVideoConvertor',
'preferedformat': 'mp4', # Recode if needed
}]
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
return output_path
except Exception as e:
print(f"Error downloading YouTube video: {str(e)}")
return None
def extract_frames(video_path, output_dir, frame_interval_seconds=10):
"""Extract frames from a video file at specified intervals"""
# Clean output directory before extracting new frames
if os.path.exists(output_dir):
for filename in os.listdir(output_dir):
file_path = os.path.join(output_dir, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')
else:
os.makedirs(output_dir, exist_ok=True)
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return False
fps = cap.get(cv2.CAP_PROP_FPS)
frame_interval = int(fps * frame_interval_seconds)
count = 0
saved = 0
while True:
ret, frame = cap.read()
if not ret:
break
if count % frame_interval == 0:
frame_filename = os.path.join(output_dir, f"frame_{count:06d}.jpg")
cv2.imwrite(frame_filename, frame)
saved += 1
count += 1
cap.release()
print(f"Extracted {saved} frames.")
return saved > 0
except Exception as e:
print(f"Exception during frame extraction: {e}")
return False
def image_qa(image_path: str, question: str) -> str:
"""Answer questions about an image using the BLIP model"""
try:
image = Image.open(image_path).convert('RGB')
inputs = processor_vqa(image, question, return_tensors="pt").to(device)
out = model_vqa.generate(**inputs)
answer = processor_vqa.decode(out[0], skip_special_tokens=True)
return answer
except Exception as e:
print(f"Error in image_qa: {str(e)}")
return f"Error processing image: {str(e)}"
# --- Node functions ---
def router(state: Dict[str, Any]) -> str:
"""Determine the next node based on question content and file type"""
question = state.get('question', '')
# Pattern for Wikipedia and similar sources
wiki_pattern = r"(wikipedia\.org|wiki|encyclopedia|britannica\.com|encyclop[a|æ]dia)"
has_wiki = re.search(wiki_pattern, question, re.IGNORECASE) is not None
# Pattern for YouTube
yt_pattern = r"(https?://)?(www\.)?(youtube\.com|youtu\.be)/[^\s]+"
has_youtube = re.search(yt_pattern, question) is not None
# Check for image
has_image = state.get('file_type') == 'picture'
# Check for audio
has_audio = state.get('file_type') == 'audio'
print(f"Has Wikipedia reference: {has_wiki}")
print(f"Has YouTube link: {has_youtube}")
print(f"Has picture file: {has_image}")
print(f"Has audio file: {has_audio}")
if has_wiki:
return "retrieve"
elif has_youtube:
# Store the extracted YouTube URL in the state
url_match = re.search(r"(https?://[^\s]+)", question)
if url_match:
state['youtube_url'] = url_match.group(0)
return "video"
elif has_image:
return "image"
elif has_audio:
return "audio"
else:
return "llm"
def node_decide(state: Dict[str, Any]) -> Dict[str, Any]:
"""Router node that decides which node to go to next"""
print("Running node_decide")
# Initialize context list if not present
if 'context' not in state:
state['context'] = []
# Add the next state to the state dict
state["next"] = router(state)
print(f"Routing to: {state['next']}")
return state
def node_image(state: Dict[str, Any]) -> Dict[str, Any]:
"""Process image-based questions"""
print("Running node_image")
try:
# Make sure the image file exists
if not os.path.exists(state['file_path']):
state['answer'] = ensure_final_answer_format("Image file not found.")
return state
# Get answer from image QA model
answer = image_qa(state['file_path'], state['question'])
# Format the final answer
state['answer'] = ensure_final_answer_format(answer)
# Add document to state for traceability
image_doc = Document(
page_content=f"Image analysis result: {answer}",
metadata={"source": "image_analysis", "file_path": state['file_path']}
)
state['context'].append(image_doc)
except Exception as e:
error_msg = f"Error processing image: {str(e)}"
print(error_msg)
state['answer'] = ensure_final_answer_format(error_msg)
return state
def node_video(state: Dict[str, Any]) -> Dict[str, Any]:
"""Process video-based questions"""
print("Running node_video")
youtube_url = state.get('youtube_url')
if not youtube_url:
state['answer'] = ensure_final_answer_format("No YouTube URL found in the question.")
return state
question = state['question']
# Extract the actual question part (remove the URL)
question_text = re.sub(r'https?://[^\s]+', '', question).strip()
if not question_text.endswith('?'):
question_text += '?'
video_file = download_youtube_video(youtube_url)
if not video_file or not os.path.exists(video_file):
state['answer'] = ensure_final_answer_format("Failed to download the video.")
return state
frames_dir = "/tmp/frames"
os.makedirs(frames_dir, exist_ok=True)
success = extract_frames(video_path=video_file, output_dir=frames_dir, frame_interval_seconds=10)
if not success:
state['answer'] = ensure_final_answer_format("Failed to extract frames from the video.")
return state
result = answer_video_question(frames_dir, question_text)
final_answer = result['most_common_answer']
state['frame_answers'] = result['all_answers']
# Create Document objects for each frame analysis
frame_documents = []
for i, ans in enumerate(result['all_answers']):
doc = Document(
page_content=f"Frame {i}: {ans}",
metadata={"frame_number": i, "source": "video_analysis"}
)
frame_documents.append(doc)
# Add documents to state
state['context'].extend(frame_documents)
state['answer'] = ensure_final_answer_format(final_answer)
print(f"Video answer: {state['answer']}")
return state
def node_audio_rag(state: Dict[str, Any]) -> Dict[str, Any]:
"""Process audio-based questions"""
print(f"Processing audio file: {state['file_path']}")
try:
# Step 1: Transcribe audio
audio, sr = librosa.load(state['file_path'], sr=16000)
asr_result = asr_pipe({"raw": audio, "sampling_rate": sr})
audio_transcript = asr_result['text']
print(f"Audio transcript: {audio_transcript}")
# Step 2: Store transcript in vector store
transcript_doc = [Document(page_content=audio_transcript)]
embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-large-en-v1.5')
vector_db = FAISS.from_documents(transcript_doc, embedding=embeddings)
# Step 3: Retrieve relevant docs for the user's question
question = state['question']
similar_docs = vector_db.similarity_search(question, k=1)
retrieved_context = "\n".join([doc.page_content for doc in similar_docs])
# Step 4: Generate answer
prompt = (
f"You are an AI assistant that answers questions about audio content.\n\n"
f"Audio transcript: {retrieved_context}\n\n"
f"Question: {question}\n\n"
f"Based only on the provided audio transcript, answer the question. "
f"If the transcript does not contain relevant information, state that clearly.\n\n"
f"End your response with 'FINAL ANSWER: ' followed by a concise answer."
)
llm_response = llm_pipe(prompt)
answer_text = llm_response[0]['generated_text']
# Add documents to state
state['context'].extend(transcript_doc)
state['context'].append(Document(
page_content=prompt,
metadata={"source": "audio_analysis_prompt"}
))
# Ensure final answer format
state['answer'] = ensure_final_answer_format(answer_text)
except Exception as e:
error_msg = f"Audio processing error: {str(e)}"
print(error_msg)
state['answer'] = ensure_final_answer_format(error_msg)
return state
def node_llm(state: Dict[str, Any]) -> Dict[str, Any]:
"""Process general knowledge questions with LLM"""
print("Running node_llm")
question = state['question']
# Compose a detailed prompt
prompt = (
"You are an AI assistant that answers questions using your general knowledge. "
"Follow these steps:\n\n"
"1. If the question appears to be scrambled or jumbled, first try to unscramble or reconstruct the intended meaning.\n"
"2. Analyze the question (unscrambled if needed) and use your own knowledge to answer it.\n"
"3. If the question can't be answered with certainty, provide your best estimate and clearly explain any assumptions.\n"
"4. Format your answer using these rules:\n"
" - Numbers: Plain digits without commas/units (e.g. 1234567)\n"
" - Strings: Minimal words, no articles/abbreviations\n"
" - Lists: comma-separated values without extra formatting\n\n"
"5. Always conclude with:\n"
"FINAL ANSWER: [your answer] (replace bracketed text)\n\n"
f"Current question: {question}"
)
# Add document to state for traceability
query_doc = Document(
page_content=prompt,
metadata={"source": "llm_prompt"}
)
state['context'].append(query_doc)
try:
result = llm_pipe(prompt)
answer_text = result[0]['generated_text']
state['answer'] = ensure_final_answer_format(answer_text)
except Exception as e:
print(f"Error in LLM processing: {str(e)}")
error_msg = f"An error occurred while processing your question: {str(e)}"
state['answer'] = ensure_final_answer_format(error_msg)
print(f"LLM answer: {state['answer']}")
return state
def retrieve(state: State) -> State:
"""Retrieve relevant documents using RAG"""
print("Running retrieve")
question = state["question"]
try:
# Tokenize the question
inputs = tokenizer(question, return_tensors="pt")
# Get doc_ids by using the retriever directly
question_hidden_states = rag_model.question_encoder(inputs["input_ids"])[0]
docs_dict = retriever(
inputs["input_ids"].numpy(),
question_hidden_states.detach().numpy(),
return_tensors="pt"
)
# Extract the retrieved passages
all_chunks = []
# Debug print to see what's in docs_dict
print(f"docs_dict keys: {docs_dict.keys()}")
# Check for different possible keys that might contain the documents
doc_text_key = None
for possible_key in ['retrieved_doc_text', 'doc_text', 'texts', 'documents']:
if possible_key in docs_dict:
doc_text_key = possible_key
break
if doc_text_key:
# Access the retrieved document texts from the docs_dict
for i in range(len(docs_dict["doc_ids"][0])):
doc_text = docs_dict[doc_text_key][0][i]
all_chunks.append(Document(page_content=doc_text))
print(f"Retrieved {len(all_chunks)} documents")
else:
# Fallback: Try to extract document text from doc_ids
doc_ids = docs_dict.get("doc_ids", [[]])[0]
print(f"Retrieved doc_ids: {doc_ids}")
# Create minimal document stubs from IDs
for doc_id in doc_ids:
stub_text = f"Information related to document ID: {doc_id}"
all_chunks.append(Document(page_content=stub_text))
print(f"Created {len(all_chunks)} document stubs from IDs")
# Add documents to state context
if not state.get('context'):
state['context'] = []
state['context'].extend(all_chunks)
except Exception as e:
print(f"Error in retrieval: {str(e)}")
# Create an error document
error_doc = Document(
page_content=f"Error during retrieval: {str(e)}",
metadata={"source": "retrieval_error"}
)
if not state.get('context'):
state['context'] = []
state['context'].append(error_doc)
return state
def generate(state: State) -> State:
"""Generate an answer based on retrieved documents"""
print("Running generate")
try:
# Check if context exists
if not state.get('context') or len(state['context']) == 0:
state['answer'] = ensure_final_answer_format("No relevant information found to answer your question.")
return state
# Concatenate all context documents into a single string
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
# Format the prompt for the LLM
prompt_str = PromptTemplate(
input_variables=["question", "context"],
template=(
"You are an AI assistant that answers questions using retrieved context. "
"Follow these steps:\n\n"
"1. Analyze the provided context:\n{context}\n\n"
"2. If the context contains scrambled text, first attempt to reconstruct meaningful information\n"
"3. If the question can't be answered from context alone, combine context with general knowledge "
"but clearly state this limitation\n"
"4. Format your answer using these rules:\n"
" - Numbers: Plain digits without commas/units (e.g. 1234567)\n"
" - Strings: Minimal words, no articles/abbreviations\n"
" - Lists: comma-separated values without extra formatting\n\n"
"5. Always conclude with:\n"
"FINAL ANSWER: [your answer] (replace bracketed text)\n\n"
"Current question: {question}"
)
).format(question=state["question"], context=docs_content)
# Generate answer using the LLM pipeline
response = llm_pipe(prompt_str)
answer_text = response[0]["generated_text"]
# Ensure answer has the FINAL ANSWER format
state['answer'] = ensure_final_answer_format(answer_text)
except Exception as e:
print(f"Error in generate node: {str(e)}")
error_msg = f"Error generating answer: {str(e)}"
state['answer'] = ensure_final_answer_format(error_msg)
return state
# --- Define the edge condition function ---
def get_next_node(state: Dict[str, Any]) -> str:
"""Get the next node from the state"""
return state["next"]
# Create the StateGraph
graph = StateGraph(State)
# Add nodes
graph.add_node("decide", node_decide)
graph.add_node("video", node_video)
graph.add_node("llm", node_llm)
graph.add_node("retrieve", retrieve)
graph.add_node("generate", generate)
graph.add_node("image", node_image)
graph.add_node("audio", node_audio_rag)
# Add edge from START to decide
graph.add_edge(START, "decide")
graph.add_edge("retrieve", "generate")
# Add conditional edges from decide to other nodes based on question
graph.add_conditional_edges(
"decide",
get_next_node,
{
"video": "video",
"llm": "llm",
"retrieve": "retrieve",
"image": "image",
"audio": "audio"
}
)
# Add edges from all terminal nodes to END
graph.add_edge("video", END)
graph.add_edge("llm", END)
graph.add_edge("generate", END)
graph.add_edge("image", END)
graph.add_edge("audio", END)
# Compile the graph
agent = graph.compile()
# --- Intelligent Agent Function ---
def intelligent_agent(state: State) -> str:
"""Process a question using the appropriate pipeline based on content."""
try:
# Ensure state has proper structure
if not isinstance(state, dict):
return "FINAL ANSWER: Error - input must be a valid State dictionary"
# Make sure question exists
if 'question' not in state:
return "FINAL ANSWER: Error - question is required"
# Initialize context if not present
if 'context' not in state:
state['context'] = []
print(f"Processing question: {state['question']}")
# Invoke the agent with the state
final_state = agent.invoke(state)
# Ensure answer has FINAL ANSWER format
answer = final_state.get('answer', "No answer found.")
formatted_answer = ensure_final_answer_format(answer)
return formatted_answer
except Exception as e:
print(f"Error in agent execution: {str(e)}")
return f"FINAL ANSWER: An error occurred - {str(e)}"