Spaces:
Sleeping
Sleeping
Samuel Thomas
commited on
Commit
·
11398e5
1
Parent(s):
ebdd994
multiple revisions
Browse files- app.py +18 -15
- requirements.txt +1 -0
- tools.py +1472 -519
app.py
CHANGED
@@ -4,7 +4,7 @@ import requests
|
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
import traceback
|
7 |
-
from tools import
|
8 |
|
9 |
# (Keep Constants as is)
|
10 |
# --- Constants ---
|
@@ -87,24 +87,27 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
87 |
tb_str = traceback.format_exc()
|
88 |
print(f"Error creating new states: {tb_str}")
|
89 |
return f"Error creating new states: {tb_str}", None
|
|
|
|
|
90 |
|
91 |
-
#
|
92 |
answers_payload = []
|
93 |
results_log = []
|
94 |
for r in range(len(hf_questions)):
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
|
109 |
if not answers_payload:
|
110 |
print("Agent did not produce any answers to submit.")
|
|
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
import traceback
|
7 |
+
from tools import create_memory_safe_workflow, get_file_type, write_bytes_to_temp_dir, AgentState, extract_final_answer, run_agent
|
8 |
|
9 |
# (Keep Constants as is)
|
10 |
# --- Constants ---
|
|
|
87 |
tb_str = traceback.format_exc()
|
88 |
print(f"Error creating new states: {tb_str}")
|
89 |
return f"Error creating new states: {tb_str}", None
|
90 |
+
|
91 |
+
agent = create_memory_safe_workflow()
|
92 |
|
93 |
+
# Setup states for questions and run agent
|
94 |
answers_payload = []
|
95 |
results_log = []
|
96 |
for r in range(len(hf_questions)):
|
97 |
+
s = AgentState(question = hf_questions[r]['question'],
|
98 |
+
input_file = hf_questions[r]['input_file'],
|
99 |
+
file_type = hf_questions[r]['file_type'],
|
100 |
+
file_path = hf_questions[r]['file_path'])
|
101 |
+
try:
|
102 |
+
task_id = hf_questions[r]['task_id']
|
103 |
+
question_text = hf_questions[r]['question']
|
104 |
+
full_answer = run_agent(agent, s)
|
105 |
+
submitted_answer = extract_final_answer(full_answer[-1].content)
|
106 |
+
answers_payload.append({"task_id": task_id, "model_answer": submitted_answer})
|
107 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
108 |
+
except:
|
109 |
+
print(f"Error running agent on task {task_id}: {e}")
|
110 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
111 |
|
112 |
if not answers_payload:
|
113 |
print("Agent did not produce any answers to submit.")
|
requirements.txt
CHANGED
@@ -19,3 +19,4 @@ accelerate
|
|
19 |
en_core_web_sm @ https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
20 |
transformers==4.40.0
|
21 |
datasets==2.19.0
|
|
|
|
19 |
en_core_web_sm @ https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
20 |
transformers==4.40.0
|
21 |
datasets==2.19.0
|
22 |
+
beautifulsoup4
|
tools.py
CHANGED
@@ -1,45 +1,85 @@
|
|
1 |
-
|
2 |
-
import
|
|
|
3 |
import tempfile
|
|
|
4 |
import glob
|
5 |
-
import yt_dlp
|
6 |
import shutil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import cv2
|
8 |
-
import
|
9 |
import wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
from langchain.docstore.document import Document
|
13 |
from langchain.prompts import PromptTemplate
|
14 |
from langchain_community.document_loaders import WikipediaLoader
|
15 |
-
from
|
16 |
-
from
|
17 |
-
from langchain_community.retrievers import BM25Retriever # If you are using it
|
18 |
-
from langgraph.prebuilt import ToolNode, tools_condition # If you are using it
|
19 |
from langchain.vectorstores import FAISS
|
20 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
21 |
from langchain.schema import Document
|
22 |
-
from
|
23 |
-
from
|
24 |
-
from
|
25 |
-
from
|
26 |
-
from transformers import AutoTokenizer, AutoModelWithLMHead
|
27 |
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
import re
|
31 |
-
from PIL import Image # This is correctly imported, but was being used incorrectly
|
32 |
-
import numpy as np
|
33 |
-
from collections import Counter
|
34 |
import torch
|
35 |
-
from
|
36 |
-
from
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
nlp = spacy.load("en_core_web_sm")
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Define file extension sets for each category
|
44 |
PICTURE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp'}
|
45 |
AUDIO_EXTENSIONS = {'.mp3', '.wav', '.aac', '.flac', '.ogg', '.m4a', '.wma'}
|
@@ -82,8 +122,196 @@ def write_bytes_to_temp_dir(file_bytes: bytes, file_name: str) -> str:
|
|
82 |
print(f"File written to: {file_path}")
|
83 |
return file_path
|
84 |
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
question: str
|
88 |
task_id: str
|
89 |
input_file: Optional[bytes]
|
@@ -93,144 +321,628 @@ class State(TypedDict, total=False):
|
|
93 |
youtube_url: Optional[str]
|
94 |
answer: Optional[str]
|
95 |
frame_answers: Optional[list]
|
96 |
-
next: Optional[str] # Added to track the next node
|
97 |
-
|
98 |
-
# --- LLM pipeline for general questions ---
|
99 |
-
llm_pipe = pipeline(
|
100 |
-
"text-generation",
|
101 |
-
model="microsoft/Phi-3-mini-4k-instruct",
|
102 |
-
device_map="auto",
|
103 |
-
torch_dtype="auto",
|
104 |
-
max_new_tokens=256,
|
105 |
-
trust_remote_code=True
|
106 |
-
)
|
107 |
-
|
108 |
-
# Initialize RAG components
|
109 |
-
tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base", trust_remote_code=True)
|
110 |
-
retriever = RagRetriever.from_pretrained(
|
111 |
-
"facebook/rag-token-base",
|
112 |
-
index_name="exact", # or "legacy" for legacy FAISS index
|
113 |
-
use_dummy_dataset=False, # set to False and download the full index for real Wikipedia retrieval
|
114 |
-
trust_remote_code=True, # Trust remote code for dataset loading
|
115 |
-
dataset_revision="main", # Specify a fixed revision
|
116 |
-
dataset="wiki_dpr", # Explicitly specify dataset name
|
117 |
-
)
|
118 |
-
rag_model = RagSequenceForGeneration.from_pretrained(
|
119 |
-
"facebook/rag-token-base",
|
120 |
-
retriever=retriever,
|
121 |
-
trust_remote_code=True
|
122 |
-
)
|
123 |
-
# Speech-to-text pipeline
|
124 |
-
asr_pipe = pipeline(
|
125 |
-
"automatic-speech-recognition",
|
126 |
-
model="openai/whisper-small",
|
127 |
-
device="auto"
|
128 |
-
)
|
129 |
-
|
130 |
-
# --- BLIP VQA setup ---
|
131 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
132 |
-
vqa_model_name = "Salesforce/blip-vqa-base"
|
133 |
-
processor_vqa = BlipProcessor.from_pretrained(vqa_model_name)
|
134 |
-
|
135 |
-
# Attempt to load model to GPU; fall back to CPU if OOM
|
136 |
-
try:
|
137 |
-
model_vqa = BlipForQuestionAnswering.from_pretrained(vqa_model_name).to(device)
|
138 |
-
except torch.cuda.OutOfMemoryError:
|
139 |
-
print("WARNING: Loading model to CPU due to insufficient GPU memory.")
|
140 |
-
device = "cpu" # Switch device to CPU
|
141 |
-
model_vqa = BlipForQuestionAnswering.from_pretrained(vqa_model_name).to(device)
|
142 |
-
|
143 |
-
# --- Helper functions ---
|
144 |
-
def ensure_final_answer_format(answer_text: str) -> str:
|
145 |
-
"""Ensure the answer ends with FINAL ANSWER: format"""
|
146 |
-
# Check if the answer already contains a FINAL ANSWER section
|
147 |
-
if "FINAL ANSWER:" in answer_text:
|
148 |
-
# Extract everything after FINAL ANSWER:
|
149 |
-
final_answer_part = answer_text.split("FINAL ANSWER:", 1)[1].strip()
|
150 |
-
return f"FINAL ANSWER: {final_answer_part}"
|
151 |
-
else:
|
152 |
-
# If no FINAL ANSWER section exists, wrap the entire answer
|
153 |
-
return f"FINAL ANSWER: {answer_text.strip()}"
|
154 |
-
|
155 |
-
def extract_entities(text: str) -> List[str]:
|
156 |
-
"""Extract key entities from text using spaCy if available, or regex fallback"""
|
157 |
-
if nlp:
|
158 |
-
# Using spaCy for better entity extraction
|
159 |
-
doc = nlp(text)
|
160 |
-
entities = [ent.text for ent in doc.ents]
|
161 |
-
keywords = [token.text for token in doc if token.pos_ in ("PROPN", "NOUN")]
|
162 |
-
return entities if entities else keywords
|
163 |
-
else:
|
164 |
-
# Simple fallback using regex to extract potential keywords
|
165 |
-
words = text.lower().split()
|
166 |
-
stopwords = ["what", "who", "when", "where", "why", "how", "is", "are", "the", "a", "an", "of", "in", "on", "at"]
|
167 |
-
keywords = [word for word in words if word not in stopwords and len(word) > 2]
|
168 |
-
return keywords
|
169 |
|
170 |
-
def answer_question_on_frame(image_path, question):
|
171 |
-
"""Answer a question about a single video frame using BLIP"""
|
172 |
-
try:
|
173 |
-
image = Image.open(image_path).convert('RGB')
|
174 |
-
inputs = processor_vqa(image, question, return_tensors="pt").to(device)
|
175 |
-
out = model_vqa.generate(**inputs)
|
176 |
-
answer = processor_vqa.decode(out[0], skip_special_tokens=True)
|
177 |
-
return answer
|
178 |
-
except Exception as e:
|
179 |
-
print(f"Error processing frame {image_path}: {str(e)}")
|
180 |
-
return "Error processing this frame"
|
181 |
|
182 |
-
def
|
183 |
-
"""
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
|
195 |
-
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
-
answers = []
|
212 |
-
for frame_path in frame_files:
|
213 |
-
try:
|
214 |
-
ans = answer_question_on_frame(frame_path, question)
|
215 |
-
answers.append(ans)
|
216 |
-
print(f"Processed frame: {os.path.basename(frame_path)}, Answer: {ans}")
|
217 |
except Exception as e:
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
if not answers:
|
221 |
-
return {
|
222 |
-
"most_common_answer": "Could not analyze any frames successfully.",
|
223 |
-
"all_answers": [],
|
224 |
-
"answer_counts": Counter()
|
225 |
-
}
|
226 |
|
227 |
-
counted = Counter(answers)
|
228 |
-
most_common_answer, freq = counted.most_common(1)[0]
|
229 |
-
return {
|
230 |
-
"most_common_answer": most_common_answer,
|
231 |
-
"all_answers": answers,
|
232 |
-
"answer_counts": counted
|
233 |
-
}
|
234 |
|
235 |
def download_youtube_video(url, output_dir='/tmp/video/', output_filename='downloaded_video.mp4'):
|
236 |
"""Download a YouTube video using yt-dlp"""
|
@@ -307,419 +1019,660 @@ def extract_frames(video_path, output_dir, frame_interval_seconds=10):
|
|
307 |
print(f"Exception during frame extraction: {e}")
|
308 |
return False
|
309 |
|
310 |
-
def
|
311 |
-
"""Answer
|
312 |
try:
|
|
|
|
|
|
|
|
|
|
|
313 |
image = Image.open(image_path).convert('RGB')
|
314 |
inputs = processor_vqa(image, question, return_tensors="pt").to(device)
|
315 |
out = model_vqa.generate(**inputs)
|
316 |
answer = processor_vqa.decode(out[0], skip_special_tokens=True)
|
317 |
return answer
|
318 |
except Exception as e:
|
319 |
-
print(f"Error
|
320 |
-
return
|
321 |
-
|
322 |
-
# --- Node functions ---
|
323 |
-
def router(state: Dict[str, Any]) -> str:
|
324 |
-
"""Determine the next node based on question content and file type"""
|
325 |
-
question = state.get('question', '')
|
326 |
-
|
327 |
-
# Pattern for Wikipedia and similar sources
|
328 |
-
wiki_pattern = r"(wikipedia\.org|wiki|encyclopedia|britannica\.com|encyclop[a|æ]dia)"
|
329 |
-
has_wiki = re.search(wiki_pattern, question, re.IGNORECASE) is not None
|
330 |
-
|
331 |
-
# Pattern for YouTube
|
332 |
-
yt_pattern = r"(https?://)?(www\.)?(youtube\.com|youtu\.be)/[^\s]+"
|
333 |
-
has_youtube = re.search(yt_pattern, question) is not None
|
334 |
-
|
335 |
-
# Check for image
|
336 |
-
has_image = state.get('file_type') == 'picture'
|
337 |
|
338 |
-
|
339 |
-
|
|
|
340 |
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
|
|
|
|
|
|
345 |
|
346 |
-
|
347 |
-
|
348 |
-
elif has_youtube:
|
349 |
-
# Store the extracted YouTube URL in the state
|
350 |
-
url_match = re.search(r"(https?://[^\s]+)", question)
|
351 |
-
if url_match:
|
352 |
-
state['youtube_url'] = url_match.group(0)
|
353 |
-
return "video"
|
354 |
-
elif has_image:
|
355 |
-
return "image"
|
356 |
-
elif has_audio:
|
357 |
-
return "audio"
|
358 |
-
else:
|
359 |
-
return "llm"
|
360 |
-
|
361 |
-
def node_decide(state: Dict[str, Any]) -> Dict[str, Any]:
|
362 |
-
"""Router node that decides which node to go to next"""
|
363 |
-
print("Running node_decide")
|
364 |
-
# Initialize context list if not present
|
365 |
-
if 'context' not in state:
|
366 |
-
state['context'] = []
|
367 |
-
# Add the next state to the state dict
|
368 |
-
state["next"] = router(state)
|
369 |
-
print(f"Routing to: {state['next']}")
|
370 |
-
return state
|
371 |
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
# Make sure the image file exists
|
377 |
-
if not os.path.exists(state['file_path']):
|
378 |
-
state['answer'] = ensure_final_answer_format("Image file not found.")
|
379 |
-
return state
|
380 |
-
|
381 |
-
# Get answer from image QA model
|
382 |
-
answer = image_qa(state['file_path'], state['question'])
|
383 |
-
|
384 |
-
# Format the final answer
|
385 |
-
state['answer'] = ensure_final_answer_format(answer)
|
386 |
-
|
387 |
-
# Add document to state for traceability
|
388 |
-
image_doc = Document(
|
389 |
-
page_content=f"Image analysis result: {answer}",
|
390 |
-
metadata={"source": "image_analysis", "file_path": state['file_path']}
|
391 |
-
)
|
392 |
-
state['context'].append(image_doc)
|
393 |
-
|
394 |
-
except Exception as e:
|
395 |
-
error_msg = f"Error processing image: {str(e)}"
|
396 |
-
print(error_msg)
|
397 |
-
state['answer'] = ensure_final_answer_format(error_msg)
|
398 |
-
|
399 |
-
return state
|
400 |
|
401 |
-
|
402 |
-
"""Process video-based questions"""
|
403 |
-
print("Running node_video")
|
404 |
-
youtube_url = state.get('youtube_url')
|
405 |
-
if not youtube_url:
|
406 |
-
state['answer'] = ensure_final_answer_format("No YouTube URL found in the question.")
|
407 |
-
return state
|
408 |
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
|
|
414 |
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
|
|
|
|
|
|
|
|
419 |
|
420 |
-
|
421 |
-
|
|
|
|
|
|
|
|
|
422 |
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
|
|
|
|
|
|
427 |
|
428 |
-
result = answer_video_question(frames_dir, question_text)
|
429 |
-
final_answer = result['most_common_answer']
|
430 |
-
state['frame_answers'] = result['all_answers']
|
431 |
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
)
|
439 |
-
|
440 |
-
|
441 |
-
# Add documents to state
|
442 |
-
state['context'].extend(frame_documents)
|
443 |
-
state['answer'] = ensure_final_answer_format(final_answer)
|
444 |
-
|
445 |
-
print(f"Video answer: {state['answer']}")
|
446 |
-
return state
|
447 |
-
|
448 |
-
def node_audio_rag(state: Dict[str, Any]) -> Dict[str, Any]:
|
449 |
-
"""Process audio-based questions"""
|
450 |
-
print(f"Processing audio file: {state['file_path']}")
|
451 |
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
# Step 2: Store transcript in vector store
|
460 |
-
transcript_doc = [Document(page_content=audio_transcript)]
|
461 |
-
embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-large-en-v1.5')
|
462 |
-
vector_db = FAISS.from_documents(transcript_doc, embedding=embeddings)
|
463 |
-
|
464 |
-
# Step 3: Retrieve relevant docs for the user's question
|
465 |
-
question = state['question']
|
466 |
-
similar_docs = vector_db.similarity_search(question, k=1)
|
467 |
-
retrieved_context = "\n".join([doc.page_content for doc in similar_docs])
|
468 |
-
|
469 |
-
# Step 4: Generate answer
|
470 |
-
prompt = (
|
471 |
-
f"You are an AI assistant that answers questions about audio content.\n\n"
|
472 |
-
f"Audio transcript: {retrieved_context}\n\n"
|
473 |
-
f"Question: {question}\n\n"
|
474 |
-
f"Based only on the provided audio transcript, answer the question. "
|
475 |
-
f"If the transcript does not contain relevant information, state that clearly.\n\n"
|
476 |
-
f"End your response with 'FINAL ANSWER: ' followed by a concise answer."
|
477 |
-
)
|
478 |
-
|
479 |
-
llm_response = llm_pipe(prompt)
|
480 |
-
answer_text = llm_response[0]['generated_text']
|
481 |
-
|
482 |
-
# Add documents to state
|
483 |
-
state['context'].extend(transcript_doc)
|
484 |
-
state['context'].append(Document(
|
485 |
-
page_content=prompt,
|
486 |
-
metadata={"source": "audio_analysis_prompt"}
|
487 |
-
))
|
488 |
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
print(error_msg)
|
495 |
-
state['answer'] = ensure_final_answer_format(error_msg)
|
496 |
-
|
497 |
-
return state
|
498 |
|
499 |
-
|
500 |
-
""
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
#
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
"
|
515 |
-
|
516 |
-
|
517 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
)
|
519 |
-
|
520 |
-
#
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
)
|
525 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
526 |
|
527 |
-
try:
|
528 |
-
result = llm_pipe(prompt)
|
529 |
-
answer_text = result[0]['generated_text']
|
530 |
-
state['answer'] = ensure_final_answer_format(answer_text)
|
531 |
-
except Exception as e:
|
532 |
-
print(f"Error in LLM processing: {str(e)}")
|
533 |
-
error_msg = f"An error occurred while processing your question: {str(e)}"
|
534 |
-
state['answer'] = ensure_final_answer_format(error_msg)
|
535 |
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
"
|
540 |
-
print("Running retrieve")
|
541 |
-
question = state["question"]
|
542 |
|
|
|
543 |
try:
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
)
|
554 |
-
|
555 |
-
|
556 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
|
558 |
-
#
|
559 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
560 |
|
561 |
-
#
|
562 |
-
|
563 |
-
for
|
564 |
-
if
|
565 |
-
|
566 |
break
|
567 |
|
568 |
-
if
|
569 |
-
|
570 |
-
|
571 |
-
doc_text = docs_dict[doc_text_key][0][i]
|
572 |
-
all_chunks.append(Document(page_content=doc_text))
|
573 |
-
|
574 |
-
print(f"Retrieved {len(all_chunks)} documents")
|
575 |
else:
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
591 |
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
metadata={"source": "retrieval_error"}
|
598 |
)
|
599 |
-
|
600 |
-
|
601 |
-
state['context'].append(error_doc)
|
602 |
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
"""Generate an answer based on retrieved documents"""
|
607 |
-
print("Running generate")
|
608 |
|
|
|
609 |
try:
|
610 |
-
|
611 |
-
if
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
"3. If the question can't be answered from context alone, combine context with general knowledge "
|
627 |
-
"but clearly state this limitation\n"
|
628 |
-
"4. Format your answer using these rules:\n"
|
629 |
-
" - Numbers: Plain digits without commas/units (e.g. 1234567)\n"
|
630 |
-
" - Strings: Minimal words, no articles/abbreviations\n"
|
631 |
-
" - Lists: comma-separated values without extra formatting\n\n"
|
632 |
-
"5. Always conclude with:\n"
|
633 |
-
"FINAL ANSWER: [your answer] (replace bracketed text)\n\n"
|
634 |
-
"Current question: {question}"
|
635 |
-
)
|
636 |
-
).format(question=state["question"], context=docs_content)
|
637 |
|
638 |
-
|
639 |
-
|
640 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
641 |
|
642 |
-
|
643 |
-
state['answer'] = ensure_final_answer_format(answer_text)
|
644 |
|
645 |
-
|
646 |
-
|
647 |
-
error_msg = f"Error generating answer: {str(e)}"
|
648 |
-
state['answer'] = ensure_final_answer_format(error_msg)
|
649 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
650 |
return state
|
651 |
|
652 |
-
#
|
653 |
-
def
|
654 |
-
"""
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
# Add nodes
|
661 |
-
graph.add_node("decide", node_decide)
|
662 |
-
graph.add_node("video", node_video)
|
663 |
-
graph.add_node("llm", node_llm)
|
664 |
-
graph.add_node("retrieve", retrieve)
|
665 |
-
graph.add_node("generate", generate)
|
666 |
-
graph.add_node("image", node_image)
|
667 |
-
graph.add_node("audio", node_audio_rag)
|
668 |
-
|
669 |
-
# Add edge from START to decide
|
670 |
-
graph.add_edge(START, "decide")
|
671 |
-
graph.add_edge("retrieve", "generate")
|
672 |
-
|
673 |
-
# Add conditional edges from decide to other nodes based on question
|
674 |
-
graph.add_conditional_edges(
|
675 |
-
"decide",
|
676 |
-
get_next_node,
|
677 |
-
{
|
678 |
-
"video": "video",
|
679 |
-
"llm": "llm",
|
680 |
-
"retrieve": "retrieve",
|
681 |
-
"image": "image",
|
682 |
-
"audio": "audio"
|
683 |
-
}
|
684 |
-
)
|
685 |
|
686 |
-
#
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
692 |
|
693 |
-
|
694 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
695 |
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
722 |
|
723 |
-
|
724 |
-
|
725 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Standard Library
|
2 |
+
import os
|
3 |
+
import re
|
4 |
import tempfile
|
5 |
+
import string
|
6 |
import glob
|
|
|
7 |
import shutil
|
8 |
+
import gc
|
9 |
+
import uuid
|
10 |
+
import signal
|
11 |
+
from datetime import datetime
|
12 |
+
from io import BytesIO
|
13 |
+
from contextlib import contextmanager
|
14 |
+
from langchain_huggingface import HuggingFacePipeline
|
15 |
+
from typing import TypedDict, List, Optional, Dict, Any, Annotated, Literal, Union, Tuple, Set
|
16 |
+
import time
|
17 |
+
from collections import Counter
|
18 |
+
|
19 |
+
# Third-Party Packages
|
20 |
import cv2
|
21 |
+
import requests
|
22 |
import wikipedia
|
23 |
+
import spacy
|
24 |
+
import yt_dlp
|
25 |
+
import librosa
|
26 |
+
from PIL import Image
|
27 |
+
from bs4 import BeautifulSoup
|
28 |
+
from duckduckgo_search import DDGS
|
29 |
+
from sentence_transformers import SentenceTransformer
|
30 |
+
from transformers import BlipProcessor, BlipForQuestionAnswering, pipeline
|
31 |
|
32 |
+
# LangChain Ecosystem
|
33 |
from langchain.docstore.document import Document
|
34 |
from langchain.prompts import PromptTemplate
|
35 |
from langchain_community.document_loaders import WikipediaLoader
|
36 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
37 |
+
from langchain_community.retrievers import BM25Retriever
|
|
|
|
|
38 |
from langchain.vectorstores import FAISS
|
39 |
from langchain.embeddings import HuggingFaceEmbeddings
|
40 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
41 |
from langchain.schema import Document
|
42 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
43 |
+
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage, BaseMessage, SystemMessage, ToolMessage
|
44 |
+
from langchain_core.tools import BaseTool, StructuredTool, tool, render_text_description
|
45 |
+
from langchain_core.documents import Document
|
|
|
46 |
|
47 |
+
# LangGraph
|
48 |
+
from langgraph.graph import START, END, StateGraph
|
49 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
50 |
|
51 |
+
# PyTorch
|
|
|
|
|
|
|
|
|
52 |
import torch
|
53 |
+
from functools import partial
|
54 |
+
from transformers import pipeline
|
55 |
+
|
56 |
+
# Additional Utilities
|
57 |
+
from datetime import datetime
|
58 |
+
|
59 |
+
from urllib.parse import urljoin, urlparse
|
60 |
+
import logging
|
61 |
|
62 |
|
63 |
nlp = spacy.load("en_core_web_sm")
|
64 |
|
65 |
+
logger = logging.getLogger(__name__)
|
66 |
+
|
67 |
+
# --- Model Configuration ---
|
68 |
+
def create_llm_pipeline():
|
69 |
+
#model_id = "meta-llama/Llama-2-13b-chat-hf"
|
70 |
+
#model_id = "meta-llama/Llama-3.3-70B-Instruct"
|
71 |
+
#model_id = "mistralai/Mistral-Small-24B-Base-2501"
|
72 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
73 |
+
#model_id = "Qwen/Qwen2-7B-Instruct"
|
74 |
+
return pipeline(
|
75 |
+
"text-generation",
|
76 |
+
model=model_id,
|
77 |
+
device_map="auto",
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
max_new_tokens=1024,
|
80 |
+
temperature=0.1
|
81 |
+
)
|
82 |
+
|
83 |
# Define file extension sets for each category
|
84 |
PICTURE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp'}
|
85 |
AUDIO_EXTENSIONS = {'.mp3', '.wav', '.aac', '.flac', '.ogg', '.m4a', '.wma'}
|
|
|
122 |
print(f"File written to: {file_path}")
|
123 |
return file_path
|
124 |
|
125 |
+
|
126 |
+
def extract_final_answer(text: str) -> str:
|
127 |
+
"""
|
128 |
+
Returns the substring starting from the last occurrence of 'FINAL ANSWER:' (case-insensitive)
|
129 |
+
to the end of the string, with any trailing punctuation removed.
|
130 |
+
If not found, returns an empty string.
|
131 |
+
"""
|
132 |
+
marker = "FINAL ANSWER:"
|
133 |
+
idx = text.lower().rfind(marker.lower())
|
134 |
+
if idx == -1:
|
135 |
+
return ""
|
136 |
+
result = text[idx:].strip()
|
137 |
+
# Remove trailing punctuation
|
138 |
+
return result.rstrip(string.punctuation + " ")
|
139 |
+
|
140 |
+
|
141 |
+
class EnhancedDuckDuckGoSearchTool(BaseTool):
|
142 |
+
name: str = "enhanced_search"
|
143 |
+
description: str = (
|
144 |
+
"Performs a DuckDuckGo web search and retrieves actual content from the top web results. "
|
145 |
+
"Input should be a search query string. "
|
146 |
+
"Returns search results with extracted content from web pages, making it much more useful for answering questions. "
|
147 |
+
"Use this tool when you need up-to-date information, details about current events, or when other tools do not provide sufficient or recent answers. "
|
148 |
+
"Ideal for topics that require the latest news, recent developments, or information not covered in static sources."
|
149 |
+
)
|
150 |
+
max_results: int = 3
|
151 |
+
max_chars_per_page: int = 3000
|
152 |
+
session: Any = None # Now it's optional and defaults to None
|
153 |
+
|
154 |
+
|
155 |
+
# Use model_post_init for initialization logic in Pydantic v2+
|
156 |
+
def model_post_init(self, __context: Any) -> None:
|
157 |
+
super().model_post_init(__context)
|
158 |
+
# Initialize HTTP session here
|
159 |
+
self.session = requests.Session()
|
160 |
+
self.session.headers.update({
|
161 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
162 |
+
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
|
163 |
+
'Accept-Language': 'en-US,en;q=0.5',
|
164 |
+
'Accept-Encoding': 'gzip, deflate',
|
165 |
+
'Connection': 'keep-alive',
|
166 |
+
'Upgrade-Insecure-Requests': '1',
|
167 |
+
})
|
168 |
+
|
169 |
+
def _search_duckduckgo(self, query: str) -> List[Dict]:
|
170 |
+
"""Perform DuckDuckGo search and return results."""
|
171 |
+
try:
|
172 |
+
with DDGS() as ddgs:
|
173 |
+
results = list(ddgs.text(query, max_results=self.max_results))
|
174 |
+
return results
|
175 |
+
except Exception as e:
|
176 |
+
logger.error(f"DuckDuckGo search failed: {e}")
|
177 |
+
return []
|
178 |
+
|
179 |
+
def _extract_content_from_url(self, url: str, timeout: int = 10) -> Optional[str]:
|
180 |
+
"""Extract clean text content from a web page."""
|
181 |
+
try:
|
182 |
+
# Skip certain file types
|
183 |
+
if any(url.lower().endswith(ext) for ext in ['.pdf', '.doc', '.docx', '.xls', '.xlsx', '.ppt', '.pptx']):
|
184 |
+
return "Content type not supported for extraction"
|
185 |
+
|
186 |
+
response = self.session.get(url, timeout=timeout, allow_redirects=True)
|
187 |
+
response.raise_for_status()
|
188 |
+
|
189 |
+
# Check content type
|
190 |
+
content_type = response.headers.get('content-type', '').lower()
|
191 |
+
if 'text/html' not in content_type:
|
192 |
+
return "Non-HTML content detected"
|
193 |
+
|
194 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
195 |
+
|
196 |
+
# Remove script and style elements
|
197 |
+
for script in soup(["script", "style", "nav", "header", "footer", "aside", "form"]):
|
198 |
+
script.decompose()
|
199 |
+
|
200 |
+
# Try to find main content areas
|
201 |
+
main_content = None
|
202 |
+
for selector in ['main', 'article', '.content', '#content', '.post', '.entry']:
|
203 |
+
main_content = soup.select_one(selector)
|
204 |
+
if main_content:
|
205 |
+
break
|
206 |
+
|
207 |
+
if not main_content:
|
208 |
+
main_content = soup.find('body') or soup
|
209 |
+
|
210 |
+
# Extract text
|
211 |
+
text = main_content.get_text(separator='\n', strip=True)
|
212 |
+
|
213 |
+
# Clean up the text
|
214 |
+
lines = [line.strip() for line in text.split('\n') if line.strip()]
|
215 |
+
text = '\n'.join(lines)
|
216 |
+
|
217 |
+
# Remove excessive whitespace
|
218 |
+
text = re.sub(r'\n{3,}', '\n\n', text)
|
219 |
+
text = re.sub(r' {2,}', ' ', text)
|
220 |
+
|
221 |
+
# Truncate if too long
|
222 |
+
if len(text) > self.max_chars_per_page:
|
223 |
+
text = text[:self.max_chars_per_page] + "\n[Content truncated...]"
|
224 |
+
|
225 |
+
return text
|
226 |
+
|
227 |
+
except requests.exceptions.Timeout:
|
228 |
+
return "Page loading timed out"
|
229 |
+
except requests.exceptions.RequestException as e:
|
230 |
+
return f"Failed to retrieve page: {str(e)}"
|
231 |
+
except Exception as e:
|
232 |
+
logger.error(f"Content extraction failed for {url}: {e}")
|
233 |
+
return "Failed to extract content from page"
|
234 |
+
|
235 |
+
def _format_search_result(self, result: Dict, content: str) -> str:
|
236 |
+
"""Format a single search result with its content."""
|
237 |
+
title = result.get('title', 'No title')
|
238 |
+
url = result.get('href', 'No URL')
|
239 |
+
snippet = result.get('body', 'No snippet')
|
240 |
+
|
241 |
+
formatted = f"""
|
242 |
+
🔍 **{title}**
|
243 |
+
URL: {url}
|
244 |
+
Snippet: {snippet}
|
245 |
+
|
246 |
+
📄 **Page Content:**
|
247 |
+
{content}
|
248 |
+
---
|
249 |
+
"""
|
250 |
+
return formatted
|
251 |
+
|
252 |
+
def run(self, query: str) -> str:
|
253 |
+
|
254 |
+
"""Execute the enhanced search."""
|
255 |
+
if not query or not query.strip():
|
256 |
+
return "Please provide a search query."
|
257 |
+
|
258 |
+
query = query.strip()
|
259 |
+
logger.info(f"Searching for: {query}")
|
260 |
+
|
261 |
+
# Perform DuckDuckGo search
|
262 |
+
search_results = self._search_duckduckgo(query)
|
263 |
+
|
264 |
+
if not search_results:
|
265 |
+
return f"No search results found for query: {query}"
|
266 |
+
|
267 |
+
# Process each result and extract content
|
268 |
+
enhanced_results = []
|
269 |
+
processed_count = 0
|
270 |
+
|
271 |
+
for i, result in enumerate(search_results[:self.max_results]):
|
272 |
+
url = result.get('href', '')
|
273 |
+
if not url:
|
274 |
+
continue
|
275 |
+
|
276 |
+
logger.info(f"Processing result {i+1}: {url}")
|
277 |
+
|
278 |
+
# Extract content from the page
|
279 |
+
content = self._extract_content_from_url(url)
|
280 |
+
|
281 |
+
if content and len(content.strip()) > 50: # Only include results with substantial content
|
282 |
+
formatted_result = self._format_search_result(result, content)
|
283 |
+
enhanced_results.append(formatted_result)
|
284 |
+
processed_count += 1
|
285 |
+
|
286 |
+
# Small delay to be respectful to servers
|
287 |
+
time.sleep(0.5)
|
288 |
+
|
289 |
+
if not enhanced_results:
|
290 |
+
return f"Search completed but no content could be extracted from the pages for query: {query}"
|
291 |
+
|
292 |
+
# Compile final response
|
293 |
+
response = f"""🔍 **Enhanced Search Results for: "{query}"**
|
294 |
+
Found {len(search_results)} results, successfully processed {processed_count} pages with content.
|
295 |
+
|
296 |
+
{''.join(enhanced_results)}
|
297 |
+
|
298 |
+
💡 **Summary:** Retrieved and processed content from {processed_count} web pages to provide comprehensive information about your search query.
|
299 |
+
"""
|
300 |
+
|
301 |
+
# Ensure the response isn't too long
|
302 |
+
if len(response) > 8000:
|
303 |
+
response = response[:8000] + "\n[Response truncated to prevent memory issues]"
|
304 |
+
|
305 |
+
return response
|
306 |
+
|
307 |
+
def _run(self, query: str) -> str:
|
308 |
+
"""Required by BaseTool interface."""
|
309 |
+
return self.run(query)
|
310 |
+
|
311 |
+
# --- Agent State Definition ---
|
312 |
+
class AgentState(TypedDict):
|
313 |
+
messages: Annotated[List[AnyMessage], lambda x, y: x + y]
|
314 |
+
done: bool = False # Default value of False
|
315 |
question: str
|
316 |
task_id: str
|
317 |
input_file: Optional[bytes]
|
|
|
321 |
youtube_url: Optional[str]
|
322 |
answer: Optional[str]
|
323 |
frame_answers: Optional[list]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
+
def fetch_page_with_tables(page_title):
|
327 |
+
"""
|
328 |
+
Fetches Wikipedia page content and extracts all tables as readable text.
|
329 |
+
Returns a tuple: (main_text, [table_texts])
|
330 |
+
"""
|
331 |
+
# Fetch the page object
|
332 |
+
page = wikipedia.page(page_title)
|
333 |
+
main_text = page.content
|
334 |
+
|
335 |
+
# Get the HTML for table extraction
|
336 |
+
html = page.html()
|
337 |
+
soup = BeautifulSoup(html, 'html.parser')
|
338 |
+
tables = soup.find_all('table')
|
339 |
+
|
340 |
+
table_texts = []
|
341 |
+
for table in tables:
|
342 |
+
rows = table.find_all('tr')
|
343 |
+
table_lines = []
|
344 |
+
for row in rows:
|
345 |
+
cells = row.find_all(['th', 'td'])
|
346 |
+
cell_texts = [cell.get_text(strip=True) for cell in cells]
|
347 |
+
if cell_texts:
|
348 |
+
# Format as Markdown table row
|
349 |
+
table_lines.append(" | ".join(cell_texts))
|
350 |
+
if table_lines:
|
351 |
+
table_text = "\n".join(table_lines)
|
352 |
+
table_texts.append(table_text)
|
353 |
+
|
354 |
+
return main_text, table_texts
|
355 |
+
|
356 |
+
class WikipediaSearchToolWithFAISS(BaseTool):
|
357 |
+
name: str = "wikipedia_semantic_search_all_candidates_strong_entity_priority_list_retrieval"
|
358 |
+
description: str = (
|
359 |
+
"Fetches content from multiple Wikipedia pages based on intelligent NLP query processing "
|
360 |
+
"of various search candidates, with strong prioritization of query entities. It then performs "
|
361 |
+
"entity-focused semantic search across all fetched content to find the most relevant information, "
|
362 |
+
"with improved retrieval for lists like discographies. Uses spaCy for named entity "
|
363 |
+
"recognition and query enhancement. Input should be a search query or topic. "
|
364 |
+
"Note: Uses the current live version of Wikipedia."
|
365 |
+
)
|
366 |
+
embedding_model_name: str = "all-MiniLM-L6-v2"
|
367 |
+
chunk_size: int = 4000
|
368 |
+
chunk_overlap: int = 250 # Maintained moderate overlap
|
369 |
+
top_k_results: int = 3
|
370 |
+
spacy_model: str = "en_core_web_sm"
|
371 |
+
# Increased multiplier to fetch more candidates per semantic query variant
|
372 |
+
semantic_search_candidate_multiplier: int = 1 # Was 2, increased to 3, consider 4 if still problematic
|
373 |
+
|
374 |
+
def __init__(self, **kwargs):
|
375 |
+
super().__init__(**kwargs)
|
376 |
+
try:
|
377 |
+
self._nlp = spacy.load(self.spacy_model)
|
378 |
+
print(f"Loaded spaCy model: {self.spacy_model}")
|
379 |
+
self._embedding_model = HuggingFaceEmbeddings(model_name=self.embedding_model_name)
|
380 |
+
# Refined separators for better handling of Wikipedia lists and sections
|
381 |
+
self._text_splitter = RecursiveCharacterTextSplitter(
|
382 |
+
chunk_size=self.chunk_size,
|
383 |
+
chunk_overlap=self.chunk_overlap,
|
384 |
+
separators=[
|
385 |
+
"\n\n== ", "\n\n=== ", "\n\n==== ", # Section headers (keep with following content)
|
386 |
+
"\n\n\n", "\n\n", # Multiple newlines (paragraph breaks)
|
387 |
+
"\n* ", "\n- ", "\n# ", # List items
|
388 |
+
"\n", ". ", "! ", "? ", # Sentence breaks after newline, common punctuation
|
389 |
+
" ", "" # Word and character level
|
390 |
+
]
|
391 |
+
)
|
392 |
+
except OSError as e:
|
393 |
+
print(f"Error loading spaCy model '{self.spacy_model}': {e}")
|
394 |
+
print("Try running: python -m spacy download en_core_web_sm")
|
395 |
+
self._nlp = None
|
396 |
+
self._embedding_model = None
|
397 |
+
self._text_splitter = None
|
398 |
+
except Exception as e:
|
399 |
+
print(f"Error initializing WikipediaSearchToolWithFAISS components: {e}")
|
400 |
+
self._nlp = None
|
401 |
+
self._embedding_model = None
|
402 |
+
self._text_splitter = None
|
403 |
+
|
404 |
+
def _extract_entities_and_keywords(self, query: str) -> Tuple[List[str], List[str], str]:
|
405 |
+
if not self._nlp:
|
406 |
+
return [], [], query
|
407 |
+
doc = self._nlp(query)
|
408 |
+
main_entities = [ent.text for ent in doc.ents if ent.label_ in ["PERSON", "ORG", "GPE", "EVENT", "WORK_OF_ART"]]
|
409 |
+
keywords = [token.lemma_.lower() for token in doc if token.pos_ in ["NOUN", "PROPN", "ADJ"] and not token.is_stop and not token.is_punct and len(token.text) > 2]
|
410 |
+
main_entities = list(dict.fromkeys(main_entities))
|
411 |
+
keywords = list(dict.fromkeys(keywords))
|
412 |
+
processed_tokens = [token.lemma_ for token in doc if not token.is_stop and not token.is_punct and token.text.strip()]
|
413 |
+
processed_query = " ".join(processed_tokens)
|
414 |
+
return main_entities, keywords, processed_query
|
415 |
+
|
416 |
+
def _generate_search_candidates(self, query: str, main_entities: List[str], keywords: List[str], processed_query: str) -> List[str]:
|
417 |
+
candidates_set = set()
|
418 |
+
entity_prefix = main_entities[0] if main_entities else None
|
419 |
+
|
420 |
+
for me in main_entities:
|
421 |
+
candidates_set.add(me)
|
422 |
+
candidates_set.add(query)
|
423 |
+
if processed_query and processed_query != query:
|
424 |
+
candidates_set.add(processed_query)
|
425 |
+
|
426 |
+
if entity_prefix and keywords:
|
427 |
+
first_entity_lower = entity_prefix.lower()
|
428 |
+
for kw in keywords[:3]:
|
429 |
+
if kw not in first_entity_lower and len(kw) > 2:
|
430 |
+
candidates_set.add(f"{entity_prefix} {kw}")
|
431 |
+
keyword_combo_short = " ".join(k for k in keywords[:2] if k not in first_entity_lower and len(k)>2)
|
432 |
+
if keyword_combo_short: candidates_set.add(f"{entity_prefix} {keyword_combo_short}")
|
433 |
+
|
434 |
+
if len(main_entities) > 1:
|
435 |
+
candidates_set.add(" ".join(main_entities[:2]))
|
436 |
+
|
437 |
+
if keywords:
|
438 |
+
keyword_combo = " ".join(keywords[:2])
|
439 |
+
if entity_prefix:
|
440 |
+
candidate_to_add = f"{entity_prefix} {keyword_combo}"
|
441 |
+
if not any(c.lower() == candidate_to_add.lower() for c in candidates_set):
|
442 |
+
candidates_set.add(candidate_to_add)
|
443 |
+
elif not main_entities:
|
444 |
+
candidates_set.add(keyword_combo)
|
445 |
+
|
446 |
+
ordered_candidates = []
|
447 |
+
for me in main_entities:
|
448 |
+
if me not in ordered_candidates: ordered_candidates.append(me)
|
449 |
+
for c in list(candidates_set):
|
450 |
+
if c and c.strip() and c not in ordered_candidates: ordered_candidates.append(c)
|
451 |
+
|
452 |
+
print(f"Generated {len(ordered_candidates)} search candidates for Wikipedia page lookup (entity-prioritized): {ordered_candidates}")
|
453 |
+
return ordered_candidates
|
454 |
|
455 |
+
def _smart_wikipedia_search(self, query_text: str, main_entities_from_query: List[str], keywords_from_query: List[str], processed_query_text: str) -> List[Tuple[str, str]]:
|
456 |
+
candidates = self._generate_search_candidates(query_text, main_entities_from_query, keywords_from_query, processed_query_text)
|
457 |
+
found_pages_data: List[Tuple[str, str]] = []
|
458 |
+
processed_page_titles: Set[str] = set()
|
459 |
+
|
460 |
+
for i, candidate_query in enumerate(candidates):
|
461 |
+
print(f"\nProcessing candidate {i+1}/{len(candidates)} for page: '{candidate_query}'")
|
462 |
+
page_object = None
|
463 |
+
final_page_title = None
|
464 |
+
is_candidate_entity_focused = any(me.lower() in candidate_query.lower() for me in main_entities_from_query) if main_entities_from_query else False
|
465 |
+
|
466 |
+
try:
|
467 |
+
try:
|
468 |
+
page_to_load = candidate_query
|
469 |
+
suggest_mode = True # Default to auto_suggest=True
|
470 |
+
if is_candidate_entity_focused and main_entities_from_query:
|
471 |
+
try: # Attempt precise match first for entity-focused candidates
|
472 |
+
temp_page = wikipedia.page(page_to_load, auto_suggest=False, redirect=True)
|
473 |
+
suggest_mode = False # Flag that precise match worked
|
474 |
+
except (wikipedia.exceptions.PageError, wikipedia.exceptions.DisambiguationError):
|
475 |
+
print(f" - auto_suggest=False failed for entity-focused '{page_to_load}', trying with auto_suggest=True.")
|
476 |
+
# Fallthrough to auto_suggest=True below if this fails
|
477 |
+
|
478 |
+
if suggest_mode: # If not attempted or failed with auto_suggest=False
|
479 |
+
temp_page = wikipedia.page(page_to_load, auto_suggest=True, redirect=True)
|
480 |
+
|
481 |
+
final_page_title = temp_page.title
|
482 |
+
|
483 |
+
if is_candidate_entity_focused and main_entities_from_query:
|
484 |
+
title_matches_main_entity = any(me.lower() in final_page_title.lower() for me in main_entities_from_query)
|
485 |
+
if not title_matches_main_entity:
|
486 |
+
print(f" ! Page title '{final_page_title}' (from entity-focused candidate '{candidate_query}') "
|
487 |
+
f"does not strongly match main query entities: {main_entities_from_query}. Skipping.")
|
488 |
+
continue
|
489 |
+
if final_page_title in processed_page_titles:
|
490 |
+
print(f" ~ Already processed '{final_page_title}'")
|
491 |
+
continue
|
492 |
+
page_object = temp_page
|
493 |
+
print(f" ✓ Direct hit/suggestion for '{candidate_query}' -> '{final_page_title}'")
|
494 |
+
|
495 |
+
except wikipedia.exceptions.PageError:
|
496 |
+
if i < max(2, len(candidates) // 3) : # Try Wikipedia search for a smaller, more promising subset of candidates
|
497 |
+
print(f" - Direct access failed for '{candidate_query}'. Trying Wikipedia search...")
|
498 |
+
search_results = wikipedia.search(candidate_query, results=1)
|
499 |
+
if not search_results:
|
500 |
+
print(f" - No Wikipedia search results for '{candidate_query}'.")
|
501 |
+
continue
|
502 |
+
search_result_title = search_results[0]
|
503 |
+
try:
|
504 |
+
temp_page = wikipedia.page(search_result_title, auto_suggest=False, redirect=True) # Search results are usually canonical
|
505 |
+
final_page_title = temp_page.title
|
506 |
+
if is_candidate_entity_focused and main_entities_from_query: # Still check against original intent
|
507 |
+
title_matches_main_entity = any(me.lower() in final_page_title.lower() for me in main_entities_from_query)
|
508 |
+
if not title_matches_main_entity:
|
509 |
+
print(f" ! Page title '{final_page_title}' (from search for '{candidate_query}' -> '{search_result_title}') "
|
510 |
+
f"does not strongly match main query entities: {main_entities_from_query}. Skipping.")
|
511 |
+
continue
|
512 |
+
if final_page_title in processed_page_titles:
|
513 |
+
print(f" ~ Already processed '{final_page_title}'")
|
514 |
+
continue
|
515 |
+
page_object = temp_page
|
516 |
+
print(f" ✓ Found via search '{candidate_query}' -> '{search_result_title}' -> '{final_page_title}'")
|
517 |
+
except (wikipedia.exceptions.PageError, wikipedia.exceptions.DisambiguationError) as e_sr:
|
518 |
+
print(f" ! Error/Disambiguation for search result '{search_result_title}': {e_sr}")
|
519 |
+
else:
|
520 |
+
print(f" - Direct access failed for '{candidate_query}'. Skipping further search for this lower priority candidate.")
|
521 |
+
except wikipedia.exceptions.DisambiguationError as de:
|
522 |
+
print(f" ! Disambiguation for '{candidate_query}'. Options: {de.options[:1]}")
|
523 |
+
if de.options:
|
524 |
+
option_title = de.options[0]
|
525 |
+
try:
|
526 |
+
temp_page = wikipedia.page(option_title, auto_suggest=False, redirect=True)
|
527 |
+
final_page_title = temp_page.title
|
528 |
+
if is_candidate_entity_focused and main_entities_from_query: # Check against original intent
|
529 |
+
title_matches_main_entity = any(me.lower() in final_page_title.lower() for me in main_entities_from_query)
|
530 |
+
if not title_matches_main_entity:
|
531 |
+
print(f" ! Page title '{final_page_title}' (from disamb. of '{candidate_query}' -> '{option_title}') "
|
532 |
+
f"does not strongly match main query entities: {main_entities_from_query}. Skipping.")
|
533 |
+
continue
|
534 |
+
if final_page_title in processed_page_titles:
|
535 |
+
print(f" ~ Already processed '{final_page_title}'")
|
536 |
+
continue
|
537 |
+
page_object = temp_page
|
538 |
+
print(f" ✓ Resolved disambiguation '{candidate_query}' -> '{option_title}' -> '{final_page_title}'")
|
539 |
+
except Exception as e_dis_opt:
|
540 |
+
print(f" ! Could not load disambiguation option '{option_title}': {e_dis_opt}")
|
541 |
+
|
542 |
+
if page_object and final_page_title and (final_page_title not in processed_page_titles):
|
543 |
+
# Extract main text
|
544 |
+
main_text = page_object.content
|
545 |
+
|
546 |
+
# Extract tables using BeautifulSoup
|
547 |
+
try:
|
548 |
+
html = page_object.html()
|
549 |
+
soup = BeautifulSoup(html, 'html.parser')
|
550 |
+
tables = soup.find_all('table')
|
551 |
+
table_texts = []
|
552 |
+
for table in tables:
|
553 |
+
rows = table.find_all('tr')
|
554 |
+
table_lines = []
|
555 |
+
for row in rows:
|
556 |
+
cells = row.find_all(['th', 'td'])
|
557 |
+
cell_texts = [cell.get_text(strip=True) for cell in cells]
|
558 |
+
if cell_texts:
|
559 |
+
table_lines.append(" | ".join(cell_texts))
|
560 |
+
if table_lines:
|
561 |
+
table_text = "\n".join(table_lines)
|
562 |
+
table_texts.append(table_text)
|
563 |
+
except Exception as e:
|
564 |
+
print(f" !! Error extracting tables for '{final_page_title}': {e}")
|
565 |
+
table_texts = []
|
566 |
+
|
567 |
+
# Combine main text and all table texts as separate chunks
|
568 |
+
all_text_chunks = [main_text] + table_texts
|
569 |
+
|
570 |
+
for chunk in all_text_chunks:
|
571 |
+
found_pages_data.append((chunk, final_page_title))
|
572 |
+
processed_page_titles.add(final_page_title)
|
573 |
+
print(f" -> Added page '{final_page_title}'. Main text length: {len(main_text)} | Tables extracted: {len(table_texts)}")
|
574 |
+
except Exception as e:
|
575 |
+
print(f" !! Unexpected error processing candidate '{candidate_query}': {e}")
|
576 |
+
|
577 |
+
if not found_pages_data: print(f"\nCould not find any new, unique, entity-validated Wikipedia pages for query '{query_text}'.")
|
578 |
+
else: print(f"\nFound {len(found_pages_data)} unique, validated page(s) for processing.")
|
579 |
+
return found_pages_data
|
580 |
+
|
581 |
+
def _enhance_semantic_search(self, query: str, vector_store, main_entities: List[str], keywords: List[str], processed_query: str) -> List[Document]:
|
582 |
+
core_query_parts = set()
|
583 |
+
core_query_parts.add(query)
|
584 |
+
if processed_query != query: core_query_parts.add(processed_query)
|
585 |
+
if keywords: core_query_parts.add(" ".join(keywords[:2]))
|
586 |
+
|
587 |
+
section_phrases_templates = []
|
588 |
+
lower_query_terms = set(query.lower().split()) | set(k.lower() for k in keywords)
|
589 |
+
|
590 |
+
section_keywords_map = {
|
591 |
+
"discography": ["discography", "list of studio albums", "studio album titles and years", "albums by year", "album release dates", "official albums", "complete album list", "albums published"],
|
592 |
+
"biography": ["biography", "life story", "career details", "background history"],
|
593 |
+
"filmography": ["filmography", "list of films", "movie appearances", "acting roles"],
|
594 |
}
|
595 |
+
for section_term_key, specific_phrases_list in section_keywords_map.items():
|
596 |
+
# Check if the key (e.g., "discography") or any of its specific phrases (e.g. "list of studio albums")
|
597 |
+
# are mentioned or implied by the query terms.
|
598 |
+
if section_term_key in lower_query_terms or any(phrase_part in lower_query_terms for phrase_part in section_term_key.split()):
|
599 |
+
section_phrases_templates.extend(specific_phrases_list)
|
600 |
+
# Also check if phrases themselves are in query terms (e.g. query "list of albums by X")
|
601 |
+
for phrase in specific_phrases_list:
|
602 |
+
if phrase in query.lower(): # Check against original query for direct phrase matches
|
603 |
+
section_phrases_templates.extend(specific_phrases_list) # Add all related if one specific is hit
|
604 |
+
break
|
605 |
+
section_phrases_templates = list(dict.fromkeys(section_phrases_templates)) # Deduplicate
|
606 |
+
|
607 |
+
final_search_queries = set()
|
608 |
+
if main_entities:
|
609 |
+
entity_prefix = main_entities[0]
|
610 |
+
final_search_queries.add(entity_prefix)
|
611 |
+
for part in core_query_parts:
|
612 |
+
final_search_queries.add(f"{entity_prefix} {part}" if entity_prefix.lower() not in part.lower() else part)
|
613 |
+
for phrase_template in section_phrases_templates:
|
614 |
+
final_search_queries.add(f"{entity_prefix} {phrase_template}")
|
615 |
+
if "list of" in phrase_template or "history of" in phrase_template :
|
616 |
+
final_search_queries.add(f"{phrase_template} of {entity_prefix}")
|
617 |
+
else:
|
618 |
+
final_search_queries.update(core_query_parts)
|
619 |
+
final_search_queries.update(section_phrases_templates)
|
620 |
+
|
621 |
+
deduplicated_queries = list(dict.fromkeys(sq for sq in final_search_queries if sq and sq.strip()))
|
622 |
+
print(f"Generated {len(deduplicated_queries)} semantic search query variants (list-retrieval focused): {deduplicated_queries}")
|
623 |
+
|
624 |
+
all_results_docs: List[Document] = []
|
625 |
+
seen_content_hashes: Set[int] = set()
|
626 |
+
k_to_fetch = self.top_k_results * self.semantic_search_candidate_multiplier
|
627 |
+
|
628 |
+
for search_query_variant in deduplicated_queries:
|
629 |
+
try:
|
630 |
+
results = vector_store.similarity_search_with_score(search_query_variant, k=k_to_fetch)
|
631 |
+
print(f" Semantic search variant '{search_query_variant}' (k={k_to_fetch}) -> {len(results)} raw chunk(s) with scores.")
|
632 |
+
for doc, score in results: # Assuming similarity_search_with_score returns (doc, score)
|
633 |
+
content_hash = hash(doc.page_content[:250]) # Slightly more for hash uniqueness
|
634 |
+
if content_hash not in seen_content_hashes:
|
635 |
+
seen_content_hashes.add(content_hash)
|
636 |
+
doc.metadata['retrieved_by_variant'] = search_query_variant
|
637 |
+
doc.metadata['retrieval_score'] = float(score) # Store score
|
638 |
+
all_results_docs.append(doc)
|
639 |
+
except Exception as e:
|
640 |
+
print(f" Error in semantic search for variant '{search_query_variant}': {e}")
|
641 |
+
|
642 |
+
# Sort all collected unique results by score (FAISS L2 distance is lower is better)
|
643 |
+
all_results_docs.sort(key=lambda x: x.metadata.get('retrieval_score', float('inf')))
|
644 |
+
print(f"Collected and re-sorted {len(all_results_docs)} unique chunks from all semantic query variants.")
|
645 |
+
|
646 |
+
return all_results_docs[:self.top_k_results]
|
647 |
|
648 |
+
def _run(self, query: str) -> str:
|
649 |
+
if not self._nlp or not self._embedding_model or not self._text_splitter:
|
650 |
+
print("ERROR: WikipediaSearchToolWithFAISS components not initialized properly.")
|
651 |
+
return "Error: Wikipedia tool components not initialized properly. Please check server logs."
|
652 |
|
653 |
+
try:
|
654 |
+
print(f"\n--- Running {self.name} for query: '{query}' ---")
|
655 |
+
main_entities, keywords, processed_query = self._extract_entities_and_keywords(query)
|
656 |
+
print(f"Initial NLP Analysis - Main Entities: {main_entities}, Keywords: {keywords}, Processed Query: '{processed_query}'")
|
657 |
+
|
658 |
+
fetched_pages_data = self._smart_wikipedia_search(query, main_entities, keywords, processed_query)
|
659 |
+
|
660 |
+
if not fetched_pages_data:
|
661 |
+
return (f"Could not find any relevant, entity-validated Wikipedia pages for the query '{query}'. "
|
662 |
+
f"Main entities sought: {main_entities}")
|
663 |
+
|
664 |
+
all_page_titles = [title for _, title in fetched_pages_data]
|
665 |
+
print(f"\nSuccessfully fetched content for {len(fetched_pages_data)} Wikipedia page(s): {', '.join(all_page_titles)}")
|
666 |
+
|
667 |
+
all_documents: List[Document] = []
|
668 |
+
for page_content, page_title in fetched_pages_data:
|
669 |
+
chunks = self._text_splitter.split_text(page_content)
|
670 |
+
if not chunks:
|
671 |
+
print(f"Warning: Could not split content from Wikipedia page '{page_title}' into chunks.")
|
672 |
+
continue
|
673 |
+
for i, chunk_text in enumerate(chunks):
|
674 |
+
all_documents.append(Document(page_content=chunk_text, metadata={
|
675 |
+
"source_page_title": page_title,
|
676 |
+
"original_query": query,
|
677 |
+
"chunk_index": i # Add chunk index for potential debugging or ordering
|
678 |
+
}))
|
679 |
+
print(f"Split content from '{page_title}' into {len(chunks)} chunks.")
|
680 |
+
|
681 |
+
if not all_documents:
|
682 |
+
return (f"Could not process content into searchable chunks from the fetched Wikipedia pages "
|
683 |
+
f"({', '.join(all_page_titles)}) for query '{query}'.")
|
684 |
+
|
685 |
+
print(f"\nTotal document chunks from all pages: {len(all_documents)}")
|
686 |
|
687 |
+
print("Creating FAISS index from content of all fetched pages...")
|
688 |
+
try:
|
689 |
+
vector_store = FAISS.from_documents(all_documents, self._embedding_model)
|
690 |
+
print("FAISS index created successfully.")
|
691 |
+
except Exception as e:
|
692 |
+
return f"Error creating FAISS vector store: {e}"
|
693 |
|
694 |
+
print(f"\nPerforming enhanced semantic search across all collected content...")
|
695 |
+
try:
|
696 |
+
relevant_docs = self._enhance_semantic_search(query, vector_store, main_entities, keywords, processed_query)
|
697 |
+
except Exception as e:
|
698 |
+
return f"Error during semantic search: {e}"
|
699 |
+
|
700 |
+
if not relevant_docs:
|
701 |
+
return (f"No relevant information found within Wikipedia page(s) '{', '.join(list(dict.fromkeys(all_page_titles)))}' "
|
702 |
+
f"for your query '{query}' using entity-focused semantic search with list retrieval.")
|
703 |
+
|
704 |
+
unique_sources_in_results = list(dict.fromkeys([doc.metadata.get('source_page_title', 'Unknown Source') for doc in relevant_docs]))
|
705 |
+
result_header = (f"Found {len(relevant_docs)} relevant piece(s) of information from Wikipedia page(s) "
|
706 |
+
f"'{', '.join(unique_sources_in_results)}' for your query '{query}':\n")
|
707 |
+
nlp_summary = (f"[Original Query NLP: Main Entities: {', '.join(main_entities) if main_entities else 'None'}, "
|
708 |
+
f"Keywords: {', '.join(keywords[:5]) if keywords else 'None'}]\n\n")
|
709 |
+
result_details = []
|
710 |
+
for i, doc in enumerate(relevant_docs):
|
711 |
+
source_info = doc.metadata.get('source_page_title', 'Unknown Source')
|
712 |
+
variant_info = doc.metadata.get('retrieved_by_variant', 'N/A')
|
713 |
+
score_info = doc.metadata.get('retrieval_score', 'N/A')
|
714 |
+
detail = (f"Result {i+1} (source: '{source_info}', score: {score_info:.4f})\n"
|
715 |
+
f"(Retrieved by: '{variant_info}')\n{doc.page_content}")
|
716 |
+
result_details.append(detail)
|
717 |
+
|
718 |
+
final_result = result_header + nlp_summary + "\n\n---\n\n".join(result_details)
|
719 |
+
print(f"\nReturning {len(relevant_docs)} relevant chunks from {len(set(all_page_titles))} source page(s).")
|
720 |
+
return final_result.strip()
|
721 |
|
|
|
|
|
|
|
|
|
|
|
|
|
722 |
except Exception as e:
|
723 |
+
import traceback
|
724 |
+
print(f"Unexpected error in {self.name}: {traceback.format_exc()}")
|
725 |
+
return f"An unexpected error occurred: {str(e)}"
|
726 |
+
|
727 |
+
|
728 |
+
# Example of creating the tool instance:
|
729 |
+
# wikipedia_tool_faiss = WikipediaSearchToolWithFAISS()
|
730 |
+
|
731 |
+
# To use this new tool in your agent, you would replace the old
|
732 |
+
# `wikipedia_tool` instance with `wikipedia_tool_faiss` in your `tools` list.
|
733 |
+
# For example:
|
734 |
+
# tools = [wikipedia_tool_faiss, search_tool]
|
735 |
+
# Create tool instances
|
736 |
+
#wikipedia_tool = WikipediaSearchTool()
|
737 |
+
|
738 |
+
# --- Define Call LLM function ---
|
739 |
+
|
740 |
+
# 3. Improved LLM call with memory management
|
741 |
+
|
742 |
+
def call_llm_with_memory_management(state: AgentState, llm_model) -> AgentState: # Added llm_model parameter
|
743 |
+
"""Call LLM with memory management, context truncation, and process response."""
|
744 |
+
print("Running call_llm with memory management...")
|
745 |
+
|
746 |
+
# It's crucial to work with a copy of messages for modification within this step
|
747 |
+
# The final state["messages"] should reflect the full history + new response.
|
748 |
+
original_messages = list(state["messages"])
|
749 |
+
messages_for_llm_processing = list(state["messages"]) # Use this for truncation logic
|
750 |
+
|
751 |
+
#ipdb.set_trace()
|
752 |
+
|
753 |
+
# --- Context Truncation Logic ---
|
754 |
+
system_message_content = None
|
755 |
+
# Check if the first message is a system message and preserve it
|
756 |
+
if messages_for_llm_processing and isinstance(messages_for_llm_processing[0], SystemMessage):
|
757 |
+
system_message_content = messages_for_llm_processing[0]
|
758 |
+
# Process only non-system messages for truncation count
|
759 |
+
regular_messages = messages_for_llm_processing[1:]
|
760 |
+
else:
|
761 |
+
regular_messages = messages_for_llm_processing
|
762 |
+
|
763 |
+
# Truncate context if too many messages (e.g., keep system + X most recent)
|
764 |
+
# Max 10 messages total (e.g. 1 system + 9 others)
|
765 |
+
max_regular_messages = 9
|
766 |
+
if len(regular_messages) > max_regular_messages:
|
767 |
+
print(f"🔄 Truncating message count: {len(messages_for_llm_processing)} -> ~{max_regular_messages + (1 if system_message_content else 0)} messages")
|
768 |
+
regular_messages = regular_messages[- (max_regular_messages -1):] # Keep X-1 most recent, to add user input later
|
769 |
+
|
770 |
+
# Reconstruct messages for LLM call
|
771 |
+
messages_for_llm = []
|
772 |
+
if system_message_content:
|
773 |
+
messages_for_llm.append(system_message_content)
|
774 |
+
messages_for_llm.extend(regular_messages)
|
775 |
+
|
776 |
+
# Further truncate based on character count (rough proxy for tokens)
|
777 |
+
total_chars = sum(len(str(msg.content)) for msg in messages_for_llm)
|
778 |
+
# Example character limit, adjust based on your model (e.g. 8k chars for ~4k tokens)
|
779 |
+
char_limit = 8000
|
780 |
+
if total_chars > char_limit:
|
781 |
+
print(f"📏 Context too long ({total_chars} chars > {char_limit}), further truncation needed")
|
782 |
+
# More aggressive truncation of regular messages
|
783 |
+
chars_to_remove = total_chars - char_limit
|
784 |
+
temp_regular_messages = list(regular_messages) # copy
|
785 |
+
while sum(len(str(m.content)) for m in temp_regular_messages) > char_limit and temp_regular_messages:
|
786 |
+
if system_message_content and sum(len(str(m.content)) for m in temp_regular_messages) + len(str(system_message_content.content)) <= char_limit :
|
787 |
+
break # if removing one more makes it too small with system message
|
788 |
+
print(f"Removing message: {temp_regular_messages[0].type} - {temp_regular_messages[0].content[:50]}...")
|
789 |
+
temp_regular_messages.pop(0)
|
790 |
+
|
791 |
+
regular_messages = temp_regular_messages
|
792 |
+
messages_for_llm = [] # Rebuild
|
793 |
+
if system_message_content:
|
794 |
+
messages_for_llm.append(system_message_content)
|
795 |
+
messages_for_llm.extend(regular_messages)
|
796 |
+
print(f"Context truncated to {sum(len(str(m.content)) for m in messages_for_llm)} chars.")
|
797 |
+
|
798 |
+
new_state = state.copy() # Start with a copy of the input state
|
799 |
+
|
800 |
+
try:
|
801 |
+
if torch.cuda.is_available():
|
802 |
+
torch.cuda.empty_cache()
|
803 |
+
print(f"🧹 Pre-LLM CUDA cache cleared. Memory: {torch.cuda.memory_allocated()/1024**2:.1f}MB")
|
804 |
+
|
805 |
+
print(f"Invoking LLM with {len(messages_for_llm)} messages.")
|
806 |
+
# This is where you call your actual LLM
|
807 |
+
formatted_input = "\n".join([f"[{msg.type.upper()}] {msg.content}" for msg in messages_for_llm])
|
808 |
+
print(f"\n\nFormatted input for LLM:\n\n{formatted_input}")
|
809 |
+
|
810 |
+
llm_response_object = llm_model.invoke(formatted_input)
|
811 |
+
|
812 |
+
#ipdb.set_trace()
|
813 |
+
|
814 |
+
# The response_object is typically a BaseMessage subclass (e.g., AIMessage)
|
815 |
+
# or a string for simpler LLMs. Adapt as needed.
|
816 |
+
if isinstance(llm_response_object, BaseMessage):
|
817 |
+
ai_message_response = llm_response_object # It's already a message object
|
818 |
+
if not ai_message_response.content: # Ensure content is not empty
|
819 |
+
ai_message_response.content = ""
|
820 |
+
elif hasattr(llm_response_object, 'content'): # Some models might return a custom object with a content attribute
|
821 |
+
ai_message_response = AIMessage(content=str(llm_response_object.content) if llm_response_object.content is not None else "")
|
822 |
+
else: # Assuming it's a string for basic LLMs
|
823 |
+
ai_message_response = AIMessage(content=str(llm_response_object) if llm_response_object is not None else "")
|
824 |
+
|
825 |
+
print(f"LLM Response: {ai_message_response.content[:300]}...") # Print a snippet
|
826 |
+
|
827 |
+
# Append the LLM's response to the original full list of messages
|
828 |
+
final_messages = original_messages + [ai_message_response]
|
829 |
+
new_state["messages"] = final_messages
|
830 |
+
new_state.pop("done", None) # LLM responded, so not 'done' by default
|
831 |
+
|
832 |
+
except Exception as e:
|
833 |
+
print(f"LLM call failed: {e}")
|
834 |
+
error_message_content = f"LLM call failed with error: {str(e)}. Input consisted of {len(messages_for_llm)} messages."
|
835 |
+
|
836 |
+
if "out of memory" in str(e).lower():
|
837 |
+
print("🚨 CUDA OOM detected during LLM call! Implementing emergency cleanup...")
|
838 |
+
error_message_content = f"LLM failed due to Out of Memory: {str(e)}."
|
839 |
+
try:
|
840 |
+
if torch.cuda.is_available():
|
841 |
+
torch.cuda.empty_cache()
|
842 |
+
gc.collect()
|
843 |
+
except Exception as cleanup_e:
|
844 |
+
print(f"Emergency OOM cleanup failed: {cleanup_e}")
|
845 |
+
|
846 |
+
# Append an error message to the original message history
|
847 |
+
error_ai_message = AIMessage(content=error_message_content)
|
848 |
+
final_messages_on_error = original_messages + [error_ai_message]
|
849 |
+
new_state["messages"] = final_messages_on_error
|
850 |
+
new_state["done"] = True # Mark as done to prevent loops on LLM failure
|
851 |
+
finally:
|
852 |
+
try:
|
853 |
+
if torch.cuda.is_available():
|
854 |
+
torch.cuda.empty_cache()
|
855 |
+
print(f"🧹 Post-LLM CUDA cache cleared. Memory: {torch.cuda.memory_allocated()/1024**2:.1f}MB")
|
856 |
+
except Exception:
|
857 |
+
pass # Avoid error in cleanup hiding the main error
|
858 |
+
|
859 |
+
return new_state
|
860 |
+
import re
|
861 |
+
import uuid
|
862 |
+
|
863 |
+
def parse_react_output(state: AgentState) -> AgentState:
|
864 |
+
print("Running parse_react_output (Action prioritized)...")
|
865 |
+
messages = state["messages"]
|
866 |
+
last_message = messages[-1]
|
867 |
+
new_state = state.copy()
|
868 |
+
|
869 |
+
# Only process AI messages (not system/user)
|
870 |
+
if not isinstance(last_message, AIMessage):
|
871 |
+
return new_state
|
872 |
+
|
873 |
+
content = last_message.content
|
874 |
+
|
875 |
+
# Remove any system prompt/instructions (if present in content)
|
876 |
+
# Assume that the actual AI output is after the last occurrence of "You are a general AI assistant" or similar system prompt marker
|
877 |
+
sys_prompt_pattern = r"(You are a general AI assistant.*?)(?=\n\n|$)"
|
878 |
+
content_wo_sys_prompt = re.sub(sys_prompt_pattern, '', content, flags=re.DOTALL | re.IGNORECASE).strip()
|
879 |
+
|
880 |
+
# Find the last occurrence of FINAL ANSWER or Action Input
|
881 |
+
final_answer_match = list(re.finditer(r"FINAL ANSWER:", content_wo_sys_prompt, re.IGNORECASE))
|
882 |
+
action_input_match = list(re.finditer(r"Action Input:", content_wo_sys_prompt, re.IGNORECASE))
|
883 |
+
|
884 |
+
# Helper: get the last match position and which it was
|
885 |
+
last_marker = None
|
886 |
+
last_pos = -1
|
887 |
+
if final_answer_match:
|
888 |
+
last_fa = final_answer_match[-1]
|
889 |
+
last_marker = 'FINAL ANSWER'
|
890 |
+
last_pos = last_fa.start()
|
891 |
+
if action_input_match:
|
892 |
+
last_ai = action_input_match[-1]
|
893 |
+
if last_ai.start() > last_pos:
|
894 |
+
last_marker = 'Action Input'
|
895 |
+
last_pos = last_ai.start()
|
896 |
+
|
897 |
+
# If neither marker found, mark as done
|
898 |
+
if not last_marker:
|
899 |
+
print("No FINAL ANSWER or Action Input found in last AI output.")
|
900 |
+
new_state["done"] = True
|
901 |
+
return new_state
|
902 |
+
|
903 |
+
# Get the substring from the last marker to the end
|
904 |
+
last_section = content_wo_sys_prompt[last_pos:].strip()
|
905 |
+
|
906 |
+
# 2. If FINAL ANSWER is in the last part, end the process
|
907 |
+
if last_marker == 'FINAL ANSWER':
|
908 |
+
# Extract the answer after FINAL ANSWER:
|
909 |
+
answer = re.search(r"FINAL ANSWER:\s*(.+)", last_section, re.IGNORECASE)
|
910 |
+
final_answer_text = answer.group(1).strip() if answer else ""
|
911 |
+
updated_ai_message = AIMessage(content=f"FINAL ANSWER: {final_answer_text}", tool_calls=[])
|
912 |
+
new_state["messages"] = messages[:-1] + [updated_ai_message]
|
913 |
+
new_state["done"] = True
|
914 |
+
print(f"FINAL ANSWER found at end: '{final_answer_text}'")
|
915 |
+
return new_state
|
916 |
+
|
917 |
+
# 3. If Action Input is in the last part, launch tool
|
918 |
+
if last_marker == 'Action Input':
|
919 |
+
# Try to extract the Action and Action Input for the last occurrence
|
920 |
+
action_match = list(re.finditer(r"Action:\s*([^\n]+)", last_section))
|
921 |
+
action_input_match = list(re.finditer(r"Action Input:\s*([^\n]+)", last_section))
|
922 |
+
if action_match and action_input_match:
|
923 |
+
tool_name = action_match[-1].group(1).strip()
|
924 |
+
tool_input_raw = action_input_match[-1].group(1).strip()
|
925 |
+
print(f"ReAct: Found Action: {tool_name}, Input: '{tool_input_raw}'")
|
926 |
+
# Format tool_args as in your original code (simplified here)
|
927 |
+
tool_args = {"query": tool_input_raw}
|
928 |
+
tool_call_id = str(uuid.uuid4())
|
929 |
+
parsed_tool_calls = [{"name": tool_name, "args": tool_args, "id": tool_call_id}]
|
930 |
+
updated_ai_message = AIMessage(content=content, tool_calls=parsed_tool_calls)
|
931 |
+
new_state["messages"] = messages[:-1] + [updated_ai_message]
|
932 |
+
new_state.pop("done", None)
|
933 |
+
print(f"AIMessage updated with tool_calls: {parsed_tool_calls}")
|
934 |
+
return new_state
|
935 |
+
else:
|
936 |
+
print("Action Input found at end, but could not parse Action or Action Input.")
|
937 |
+
new_state["done"] = True
|
938 |
+
return new_state
|
939 |
+
|
940 |
+
# Fallback: mark as done
|
941 |
+
print("No actionable marker found at end of last AI output. Marking as done.")
|
942 |
+
new_state["done"] = True
|
943 |
+
return new_state
|
944 |
|
|
|
|
|
|
|
|
|
|
|
|
|
945 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
946 |
|
947 |
def download_youtube_video(url, output_dir='/tmp/video/', output_filename='downloaded_video.mp4'):
|
948 |
"""Download a YouTube video using yt-dlp"""
|
|
|
1019 |
print(f"Exception during frame extraction: {e}")
|
1020 |
return False
|
1021 |
|
1022 |
+
def answer_question_on_frame(image_path, question):
|
1023 |
+
"""Answer a question about a single video frame using BLIP"""
|
1024 |
try:
|
1025 |
+
vqa_model_name = "Salesforce/blip-vqa-base" # Not used in the provided graph logic directly
|
1026 |
+
processor_vqa = BlipProcessor.from_pretrained(vqa_model_name) # Not used
|
1027 |
+
model_vqa = BlipForQuestionAnswering.from_pretrained(vqa_model_name).to('cpu') # Not used
|
1028 |
+
device = "cpu"
|
1029 |
+
|
1030 |
image = Image.open(image_path).convert('RGB')
|
1031 |
inputs = processor_vqa(image, question, return_tensors="pt").to(device)
|
1032 |
out = model_vqa.generate(**inputs)
|
1033 |
answer = processor_vqa.decode(out[0], skip_special_tokens=True)
|
1034 |
return answer
|
1035 |
except Exception as e:
|
1036 |
+
print(f"Error processing frame {image_path}: {str(e)}")
|
1037 |
+
return "Error processing this frame"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1038 |
|
1039 |
+
def answer_video_question(frames_dir, question):
|
1040 |
+
"""Answer a question about a video by analyzing extracted frames"""
|
1041 |
+
valid_exts = ('.jpg', '.jpeg', '.png')
|
1042 |
|
1043 |
+
# Check if directory exists
|
1044 |
+
if not os.path.exists(frames_dir):
|
1045 |
+
return {
|
1046 |
+
"most_common_answer": "No frames found to analyze.",
|
1047 |
+
"all_answers": [],
|
1048 |
+
"answer_counts": Counter()
|
1049 |
+
}
|
1050 |
|
1051 |
+
frame_files = [os.path.join(frames_dir, f) for f in os.listdir(frames_dir)
|
1052 |
+
if f.lower().endswith(valid_exts)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1053 |
|
1054 |
+
# Sort frames properly by number
|
1055 |
+
def get_frame_number(filename):
|
1056 |
+
match = re.search(r'(\d+)', os.path.basename(filename))
|
1057 |
+
return int(match.group(1)) if match else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1058 |
|
1059 |
+
frame_files = sorted(frame_files, key=get_frame_number)
|
|
|
|
|
|
|
|
|
|
|
|
|
1060 |
|
1061 |
+
if not frame_files:
|
1062 |
+
return {
|
1063 |
+
"most_common_answer": "No valid image frames found.",
|
1064 |
+
"all_answers": [],
|
1065 |
+
"answer_counts": Counter()
|
1066 |
+
}
|
1067 |
|
1068 |
+
answers = []
|
1069 |
+
for frame_path in frame_files:
|
1070 |
+
try:
|
1071 |
+
ans = answer_question_on_frame(frame_path, question)
|
1072 |
+
answers.append(ans)
|
1073 |
+
print(f"Processed frame: {os.path.basename(frame_path)}, Answer: {ans}")
|
1074 |
+
except Exception as e:
|
1075 |
+
print(f"Error processing frame {frame_path}: {str(e)}")
|
1076 |
|
1077 |
+
if not answers:
|
1078 |
+
return {
|
1079 |
+
"most_common_answer": "Could not analyze any frames successfully.",
|
1080 |
+
"all_answers": [],
|
1081 |
+
"answer_counts": Counter()
|
1082 |
+
}
|
1083 |
|
1084 |
+
counted = Counter(answers)
|
1085 |
+
most_common_answer, freq = counted.most_common(1)[0]
|
1086 |
+
return {
|
1087 |
+
"most_common_answer": most_common_answer,
|
1088 |
+
"all_answers": answers,
|
1089 |
+
"answer_counts": counted
|
1090 |
+
}
|
1091 |
|
|
|
|
|
|
|
1092 |
|
1093 |
+
class YoutubeScreenshotQA(BaseTool):
|
1094 |
+
name: str = "youtube_screenshot_qa"
|
1095 |
+
description: str = (
|
1096 |
+
"Downloads a YouTube video, extracts screenshots at intervals, "
|
1097 |
+
"and answers a question about the video based on the screenshots. "
|
1098 |
+
"Input should be a dict with keys: 'youtube_url' and 'question'."
|
1099 |
+
"Example input: {'youtube_url': 'https://www.youtube.com/watch?v=L1vXCYZAYYM', 'question': 'What is the highest number of bird species on camera simultaneously?'}"
|
1100 |
+
)
|
1101 |
+
frame_interval_seconds: int = 10 # Can be parameterized if needed
|
1102 |
+
|
1103 |
+
def _run(self, input_data: Dict[str, Any]) -> str:
|
1104 |
+
youtube_url = input_data.get("youtube_url")
|
1105 |
+
question = input_data.get("question")
|
1106 |
+
|
1107 |
+
if not youtube_url or not question:
|
1108 |
+
return "Error: Input must include 'youtube_url' and 'question'."
|
1109 |
+
|
1110 |
+
# Step 1: Download the video
|
1111 |
+
video_dir = '/tmp/video/'
|
1112 |
+
video_filename = 'downloaded_video.mp4'
|
1113 |
+
print(f"Downloading YouTube video from {youtube_url}...")
|
1114 |
+
video_path = download_youtube_video(youtube_url, output_dir=video_dir, output_filename=video_filename)
|
1115 |
+
if not video_path or not os.path.exists(video_path):
|
1116 |
+
return "Error: Failed to download the YouTube video."
|
1117 |
+
|
1118 |
+
# Step 2: Extract frames
|
1119 |
+
frames_dir = '/tmp/video_frames/'
|
1120 |
+
print(f"Extracting frames from {video_path} every {self.frame_interval_seconds} seconds...")
|
1121 |
+
success = extract_frames(video_path, frames_dir, frame_interval_seconds=self.frame_interval_seconds)
|
1122 |
+
if not success:
|
1123 |
+
return "Error: Failed to extract frames from the video."
|
1124 |
+
|
1125 |
+
# Step 3: Analyze frames and answer question
|
1126 |
+
print(f"Answering question about the video frames...")
|
1127 |
+
answer_result = answer_video_question(frames_dir, question)
|
1128 |
+
if not answer_result or not answer_result.get("most_common_answer"):
|
1129 |
+
return "Error: Could not analyze video frames to answer the question."
|
1130 |
+
|
1131 |
+
# Format the result
|
1132 |
+
most_common = answer_result["most_common_answer"]
|
1133 |
+
all_answers = answer_result["all_answers"]
|
1134 |
+
counts = answer_result["answer_counts"]
|
1135 |
+
|
1136 |
+
result = (
|
1137 |
+
f"Most common answer: {most_common}\n"
|
1138 |
+
f"All answers: {all_answers}\n"
|
1139 |
+
f"Answer counts: {dict(counts)}"
|
1140 |
)
|
1141 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1142 |
|
1143 |
+
def tools_condition_with_logging(state: AgentState):
|
1144 |
+
"""
|
1145 |
+
Custom tools condition function that checks if the last message contains tool calls
|
1146 |
+
in the Thought/Action/Action Input format and logs the transition decision.
|
1147 |
+
|
1148 |
+
Args:
|
1149 |
+
state (AgentState): The current state containing messages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1150 |
|
1151 |
+
Returns:
|
1152 |
+
str: "tools" if tool calls are present, "__end__" otherwise
|
1153 |
+
"""
|
1154 |
+
|
1155 |
+
import re
|
|
|
|
|
|
|
|
|
1156 |
|
1157 |
+
# Ensure we have messages in the state
|
1158 |
+
if not state.get("messages") or len(state["messages"]) == 0:
|
1159 |
+
print("❌ No messages found in state, ending conversation")
|
1160 |
+
return "__end__"
|
1161 |
+
|
1162 |
+
# Get the last message
|
1163 |
+
last_message = state["messages"][-1]
|
1164 |
+
|
1165 |
+
# Get message content
|
1166 |
+
content = ""
|
1167 |
+
if hasattr(last_message, 'content'):
|
1168 |
+
content = str(last_message.content)
|
1169 |
+
elif isinstance(last_message, dict) and 'content' in last_message:
|
1170 |
+
content = str(last_message['content'])
|
1171 |
+
else:
|
1172 |
+
print("❌ No content found in last message, ending conversation")
|
1173 |
+
return "__end__"
|
1174 |
+
|
1175 |
+
print(f"🔍 Analyzing message content: {content[:200]}...")
|
1176 |
+
|
1177 |
+
# Check for Thought/Action/Action Input format
|
1178 |
+
has_tool_calls = False
|
1179 |
+
|
1180 |
+
# Pattern to match the format:
|
1181 |
+
# Thought: <thought>
|
1182 |
+
# Action: <tool_name>
|
1183 |
+
# Action Input: <input>
|
1184 |
+
thought_action_pattern = re.compile(
|
1185 |
+
r'Thought:\s*(.*?)\n\s*Action:\s*(.*?)\n\s*Action Input:\s*(.*?)(?:\n|$)',
|
1186 |
+
re.DOTALL | re.IGNORECASE
|
1187 |
)
|
1188 |
+
|
1189 |
+
# Also check for just Action/Action Input without Thought
|
1190 |
+
action_only_pattern = re.compile(
|
1191 |
+
r'Action:\s*(.*?)\n\s*Action Input:\s*(.*?)(?:\n|$)',
|
1192 |
+
re.DOTALL | re.IGNORECASE
|
1193 |
)
|
1194 |
+
|
1195 |
+
# Look for the complete format first
|
1196 |
+
match = thought_action_pattern.search(content)
|
1197 |
+
if not match:
|
1198 |
+
# Try the action-only format
|
1199 |
+
match = action_only_pattern.search(content)
|
1200 |
+
if match:
|
1201 |
+
thought = "No thought provided"
|
1202 |
+
action = match.group(1).strip()
|
1203 |
+
action_input = match.group(2).strip()
|
1204 |
+
else:
|
1205 |
+
action = None
|
1206 |
+
action_input = None
|
1207 |
+
thought = None
|
1208 |
+
else:
|
1209 |
+
thought = match.group(1).strip()
|
1210 |
+
action = match.group(2).strip()
|
1211 |
+
action_input = match.group(3).strip()
|
1212 |
+
|
1213 |
+
if match and action:
|
1214 |
+
has_tool_calls = True
|
1215 |
+
print(f"🔧 Found tool call format:")
|
1216 |
+
print(f" Thought: {thought}")
|
1217 |
+
print(f" Action: {action}")
|
1218 |
+
print(f" Action Input: {action_input}")
|
1219 |
+
|
1220 |
+
# Map common tool names to your actual tools
|
1221 |
+
tool_mappings = {
|
1222 |
+
'wikipedia_semantic_search': 'wikipedia_tool',
|
1223 |
+
'wikipedia': 'wikipedia_tool',
|
1224 |
+
'search': 'search_tool',
|
1225 |
+
'duckduckgo_search': 'search_tool',
|
1226 |
+
'web_search': 'search_tool',
|
1227 |
+
'youtube_screenshot_qa_tool': 'youtube_tool',
|
1228 |
+
'youtube': 'youtube_tool',
|
1229 |
+
}
|
1230 |
+
|
1231 |
+
# Normalize the action name
|
1232 |
+
normalized_action = action.lower().strip()
|
1233 |
+
|
1234 |
+
# Store the parsed tool call information in the state for the tools node to use
|
1235 |
+
if 'parsed_tool_calls' not in state:
|
1236 |
+
state['parsed_tool_calls'] = []
|
1237 |
+
|
1238 |
+
tool_call_info = {
|
1239 |
+
'thought': thought,
|
1240 |
+
'action': action,
|
1241 |
+
'action_input': action_input,
|
1242 |
+
'normalized_action': normalized_action,
|
1243 |
+
'tool_mapping': tool_mappings.get(normalized_action, normalized_action)
|
1244 |
+
}
|
1245 |
+
|
1246 |
+
state['parsed_tool_calls'].append(tool_call_info)
|
1247 |
+
print(f"🚀 Added tool call to state: {tool_call_info}")
|
1248 |
+
|
1249 |
+
# Don't execute tools here - let call_tool handle execution
|
1250 |
+
# Just store the parsed information for call_tool to use
|
1251 |
+
|
1252 |
+
# Also check for standalone tool mentions (fallback)
|
1253 |
+
if not has_tool_calls:
|
1254 |
+
# Check for tool names mentioned in content
|
1255 |
+
tool_keywords = [
|
1256 |
+
'wikipedia_semantic_search', 'wikipedia', 'search', 'duckduckgo',
|
1257 |
+
'youtube_screenshot_qa_tool', 'youtube', 'web search'
|
1258 |
+
]
|
1259 |
+
|
1260 |
+
content_lower = content.lower()
|
1261 |
+
for keyword in tool_keywords:
|
1262 |
+
if keyword in content_lower:
|
1263 |
+
print(f"🔧 Found tool keyword '{keyword}' in content (fallback detection)")
|
1264 |
+
has_tool_calls = True
|
1265 |
+
break
|
1266 |
+
|
1267 |
+
if has_tool_calls:
|
1268 |
+
print("🔧 Tool calls detected, transitioning to tools...")
|
1269 |
+
return "tools"
|
1270 |
+
else:
|
1271 |
+
print("✅ No tool calls found, ending conversation")
|
1272 |
+
return "__end__"
|
1273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1274 |
|
1275 |
+
# 2. Improved call_tool with memory management
|
1276 |
+
def call_tool_with_memory_management(state: AgentState) -> AgentState:
|
1277 |
+
"""Process tool calls with memory management."""
|
1278 |
+
print("Running call_tool with memory management...")
|
|
|
|
|
1279 |
|
1280 |
+
# Clear CUDA cache before processing
|
1281 |
try:
|
1282 |
+
import torch
|
1283 |
+
if torch.cuda.is_available():
|
1284 |
+
torch.cuda.empty_cache()
|
1285 |
+
print(f"🧹 Cleared CUDA cache. Memory: {torch.cuda.memory_allocated()/1024**2:.1f}MB")
|
1286 |
+
except:
|
1287 |
+
pass
|
1288 |
+
|
1289 |
+
# Check if we have parsed tool calls from the condition function
|
1290 |
+
if 'parsed_tool_calls' in state and state['parsed_tool_calls']:
|
1291 |
+
return execute_parsed_tool_calls(state)
|
1292 |
+
|
1293 |
+
# Fallback to original OpenAI-style tool calls handling
|
1294 |
+
messages = state["messages"]
|
1295 |
+
last_message = messages[-1]
|
1296 |
+
|
1297 |
+
if not hasattr(last_message, "tool_calls") or not last_message.tool_calls:
|
1298 |
+
print("No tool calls found in last message")
|
1299 |
+
return state
|
1300 |
+
|
1301 |
+
# Copy the messages to avoid mutating the original list
|
1302 |
+
new_messages = list(messages)
|
1303 |
+
|
1304 |
+
print(f"Processing {len(last_message.tool_calls)} tool calls")
|
1305 |
+
|
1306 |
+
for i, tool_call in enumerate(last_message.tool_calls):
|
1307 |
+
print(f"Processing tool call {i+1}: {tool_call['name'] if isinstance(tool_call, dict) else tool_call.name}")
|
1308 |
|
1309 |
+
# Handle both dict and object-style tool calls
|
1310 |
+
if isinstance(tool_call, dict):
|
1311 |
+
tool_name = tool_call.get("name", "")
|
1312 |
+
args = tool_call.get("args", {})
|
1313 |
+
tool_call_id = tool_call.get("id", str(uuid.uuid4()))
|
1314 |
+
else:
|
1315 |
+
tool_name = getattr(tool_call, "name", "")
|
1316 |
+
args = getattr(tool_call, "args", {})
|
1317 |
+
tool_call_id = getattr(tool_call, "id", str(uuid.uuid4()))
|
1318 |
|
1319 |
+
# Find the matching tool
|
1320 |
+
selected_tool = None
|
1321 |
+
for tool in tools:
|
1322 |
+
if tool.name.lower() == tool_name.lower():
|
1323 |
+
selected_tool = tool
|
1324 |
break
|
1325 |
|
1326 |
+
if not selected_tool:
|
1327 |
+
tool_result = f"Error: Tool '{tool_name}' not found. Available tools: {', '.join(t.name for t in tools)}"
|
1328 |
+
print(f"Tool not found: {tool_name}")
|
|
|
|
|
|
|
|
|
1329 |
else:
|
1330 |
+
try:
|
1331 |
+
# Extract query
|
1332 |
+
if isinstance(args, dict) and "query" in args:
|
1333 |
+
query = args["query"]
|
1334 |
+
else:
|
1335 |
+
query = str(args) if args else ""
|
1336 |
+
|
1337 |
+
print(f"Executing {tool_name} with query: {query[:100]}...")
|
1338 |
+
tool_result = selected_tool.run(query)
|
1339 |
+
|
1340 |
+
# Aggressive truncation to prevent memory issues
|
1341 |
+
max_length = 3000 if "wikipedia" in tool_name.lower() else 2000
|
1342 |
+
if len(tool_result) > max_length:
|
1343 |
+
tool_result = tool_result[:max_length] + f"... [Result truncated from {len(tool_result)} to {max_length} chars to prevent memory issues]"
|
1344 |
+
print(f"📄 Truncated result to {max_length} characters")
|
1345 |
+
|
1346 |
+
print(f"Tool result length: {len(tool_result)} characters")
|
1347 |
+
|
1348 |
+
except Exception as e:
|
1349 |
+
tool_result = f"Error executing tool '{tool_name}': {str(e)}"
|
1350 |
+
print(f"Tool execution error: {e}")
|
1351 |
|
1352 |
+
# Create tool message
|
1353 |
+
tool_message = ToolMessage(
|
1354 |
+
content=tool_result,
|
1355 |
+
name=tool_name,
|
1356 |
+
tool_call_id=tool_call_id
|
|
|
1357 |
)
|
1358 |
+
new_messages.append(tool_message)
|
1359 |
+
print(f"Added tool message for {tool_name}")
|
|
|
1360 |
|
1361 |
+
# Update the state
|
1362 |
+
new_state = state.copy()
|
1363 |
+
new_state["messages"] = new_messages
|
|
|
|
|
1364 |
|
1365 |
+
# Clear CUDA cache after processing
|
1366 |
try:
|
1367 |
+
import torch
|
1368 |
+
if torch.cuda.is_available():
|
1369 |
+
torch.cuda.empty_cache()
|
1370 |
+
except:
|
1371 |
+
pass
|
1372 |
+
|
1373 |
+
return new_state
|
1374 |
+
|
1375 |
+
|
1376 |
+
def execute_parsed_tool_calls(state: AgentState):
|
1377 |
+
"""
|
1378 |
+
Execute tool calls that were parsed from the Thought/Action/Action Input format.
|
1379 |
+
This is called by call_tool when parsed_tool_calls are present in state.
|
1380 |
+
|
1381 |
+
Args:
|
1382 |
+
state (AgentState): The current state containing parsed tool calls
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1383 |
|
1384 |
+
Returns:
|
1385 |
+
AgentState: Updated state with tool results
|
1386 |
+
"""
|
1387 |
+
|
1388 |
+
# Use the same tools list that's available globally
|
1389 |
+
# Map tool names to the actual tool instances
|
1390 |
+
tool_name_mappings = {
|
1391 |
+
'wikipedia_semantic_search': 'wikipedia_tool',
|
1392 |
+
'wikipedia': 'wikipedia_tool',
|
1393 |
+
'search': 'enhanced_search', # Updated mapping
|
1394 |
+
'duckduckgo_search': 'enhanced_search', # Updated mapping
|
1395 |
+
'web_search': 'enhanced_search', # Updated mapping
|
1396 |
+
'enhanced_search': 'enhanced_search', # Direct mapping
|
1397 |
+
'youtube_screenshot_qa_tool': 'youtube_tool',
|
1398 |
+
'youtube': 'youtube_tool',
|
1399 |
+
}
|
1400 |
+
|
1401 |
+
|
1402 |
+
# Create a lookup by tool names for your existing tools list
|
1403 |
+
tools_by_name = {}
|
1404 |
+
for tool in tools:
|
1405 |
+
tools_by_name[tool.name.lower()] = tool
|
1406 |
+
# Also map by class name for flexibility
|
1407 |
+
class_name = tool.__class__.__name__.lower()
|
1408 |
+
if 'wikipedia' in class_name:
|
1409 |
+
tools_by_name['wikipedia_tool'] = tool
|
1410 |
+
elif 'search' in class_name or 'duck' in class_name:
|
1411 |
+
tools_by_name['search_tool'] = tool
|
1412 |
+
elif 'youtube' in class_name:
|
1413 |
+
tools_by_name['youtube_tool'] = tool
|
1414 |
+
|
1415 |
+
# Copy messages to avoid mutation during iteration
|
1416 |
+
new_messages = list(state["messages"])
|
1417 |
+
|
1418 |
+
for tool_call in state['parsed_tool_calls']:
|
1419 |
+
action = tool_call['action']
|
1420 |
+
action_input = tool_call['action_input']
|
1421 |
+
thought = tool_call['thought']
|
1422 |
+
normalized_action = tool_call['normalized_action']
|
1423 |
|
1424 |
+
print(f"🚀 Executing tool: {action} with input: {action_input}")
|
|
|
1425 |
|
1426 |
+
# Find the tool instance
|
1427 |
+
tool_instance = None
|
|
|
|
|
1428 |
|
1429 |
+
# Try direct name match first
|
1430 |
+
if normalized_action in tools_by_name:
|
1431 |
+
tool_instance = tools_by_name[normalized_action]
|
1432 |
+
# Try mapped name
|
1433 |
+
elif normalized_action in tool_name_mappings:
|
1434 |
+
mapped_name = tool_name_mappings[normalized_action]
|
1435 |
+
if mapped_name in tools_by_name:
|
1436 |
+
tool_instance = tools_by_name[mapped_name]
|
1437 |
+
|
1438 |
+
if tool_instance:
|
1439 |
+
try:
|
1440 |
+
result = tool_instance.run(action_input)
|
1441 |
+
if len(result) > 6000:
|
1442 |
+
result = result[:6000] + "... [Result truncated due to length]"
|
1443 |
+
|
1444 |
+
# Create observation message in the format your agent expects
|
1445 |
+
from langchain_core.messages import AIMessage
|
1446 |
+
observation = f"Observation: {result}"
|
1447 |
+
observation_message = AIMessage(content=observation)
|
1448 |
+
new_messages.append(observation_message)
|
1449 |
+
|
1450 |
+
print(f"✅ Tool '{action}' executed successfully")
|
1451 |
+
|
1452 |
+
except Exception as e:
|
1453 |
+
print(f"❌ Error executing tool '{action}': {e}")
|
1454 |
+
from langchain_core.messages import AIMessage
|
1455 |
+
error_msg = f"Observation: Error executing '{action}': {str(e)}"
|
1456 |
+
error_message = AIMessage(content=error_msg)
|
1457 |
+
new_messages.append(error_message)
|
1458 |
+
else:
|
1459 |
+
print(f"❌ Tool '{action}' not found in available tools")
|
1460 |
+
available_tool_names = list(tools_by_name.keys())
|
1461 |
+
from langchain_core.messages import AIMessage
|
1462 |
+
error_msg = f"Observation: Tool '{action}' not found. Available tools: {', '.join(available_tool_names)}"
|
1463 |
+
error_message = AIMessage(content=error_msg)
|
1464 |
+
new_messages.append(error_message)
|
1465 |
+
|
1466 |
+
# Update state with new messages and clear parsed tool calls
|
1467 |
+
state["messages"] = new_messages
|
1468 |
+
state['parsed_tool_calls'] = []
|
1469 |
+
|
1470 |
return state
|
1471 |
|
1472 |
+
# 1. Add loop detection to your AgentState
|
1473 |
+
def should_continue(state: AgentState) -> str:
|
1474 |
+
"""Determine if the agent should continue or end."""
|
1475 |
+
print("Running should_continue....")
|
1476 |
+
messages = state["messages"]
|
1477 |
+
|
1478 |
+
#ipdb.set_trace()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1479 |
|
1480 |
+
# Check if we're done
|
1481 |
+
if state.get("done", False):
|
1482 |
+
return "end"
|
1483 |
+
|
1484 |
+
# Prevent infinite loops - limit tool calls
|
1485 |
+
tool_call_count = sum(1 for msg in messages if hasattr(msg, 'tool_calls') and msg.tool_calls)
|
1486 |
+
if tool_call_count >= 3: # Max 3 tool calls per conversation
|
1487 |
+
print(f"⚠️ Stopping: Too many tool calls ({tool_call_count})")
|
1488 |
+
return "end"
|
1489 |
+
|
1490 |
+
# Check for repeated tool calls with same query
|
1491 |
+
recent_tool_calls = []
|
1492 |
+
for msg in messages[-6:]: # Check last 6 messages
|
1493 |
+
if hasattr(msg, 'tool_calls') and msg.tool_calls:
|
1494 |
+
for tool_call in msg.tool_calls:
|
1495 |
+
if isinstance(tool_call, dict):
|
1496 |
+
recent_tool_calls.append((tool_call.get('name'), str(tool_call.get('args', {}))))
|
1497 |
+
|
1498 |
+
if len(recent_tool_calls) >= 2 and recent_tool_calls[-1] == recent_tool_calls[-2]:
|
1499 |
+
print("⚠️ Stopping: Repeated tool call detected")
|
1500 |
+
return "end"
|
1501 |
+
|
1502 |
+
# Check message count to prevent runaway conversations
|
1503 |
+
if len(messages) > 15:
|
1504 |
+
print(f"⚠️ Stopping: Too many messages ({len(messages)})")
|
1505 |
+
return "end"
|
1506 |
+
|
1507 |
+
return "continue"
|
1508 |
+
|
1509 |
+
def route_after_parse_react(state: AgentState) -> str:
|
1510 |
+
"""Determines the next step after parsing LLM output, prioritizing end state."""
|
1511 |
+
if state.get("done", False): # Check if parse_react_output decided we are done
|
1512 |
+
return "end_processing"
|
1513 |
+
|
1514 |
+
# Original logic: check for tool calls in the last message
|
1515 |
+
# Ensure messages list and last message exist before checking tool_calls
|
1516 |
+
messages = state.get("messages", [])
|
1517 |
+
if messages:
|
1518 |
+
last_message = messages[-1]
|
1519 |
+
if hasattr(last_message, 'tool_calls') and last_message.tool_calls:
|
1520 |
+
return "call_tool"
|
1521 |
+
return "call_llm"
|
1522 |
+
|
1523 |
+
#wikipedia_tool = WikipediaSearchToolWithFAISS()
|
1524 |
+
#search_tool = DuckDuckGoSearchRun()
|
1525 |
+
#youtube_screenshot_qa_tool = YoutubeScreenshotQA()
|
1526 |
+
|
1527 |
+
# Combine all tools
|
1528 |
+
#tools = [wikipedia_tool, search_tool, youtube_screenshot_qa_tool]
|
1529 |
+
|
1530 |
+
# Update your tools list to use the global instances
|
1531 |
+
#
|
1532 |
+
|
1533 |
+
# --- Graph Construction ---
|
1534 |
+
# --- Graph Construction ---
|
1535 |
+
def create_memory_safe_workflow():
|
1536 |
+
"""Create a workflow with memory management and loop prevention."""
|
1537 |
+
# These models are initialized here but might be better managed if they need to be released/reinitialized
|
1538 |
+
# like you attempt in run_agent. Consider passing them or managing their lifecycle carefully.
|
1539 |
+
hf_pipe = create_llm_pipeline()
|
1540 |
+
llm = HuggingFacePipeline(pipeline=hf_pipe)
|
1541 |
+
# vqa_model_name = "Salesforce/blip-vqa-base" # Not used in the provided graph logic directly
|
1542 |
+
# processor_vqa = BlipProcessor.from_pretrained(vqa_model_name) # Not used
|
1543 |
+
# model_vqa = BlipForQuestionAnswering.from_pretrained(vqa_model_name).to('cpu') # Not used
|
1544 |
+
|
1545 |
+
workflow = StateGraph(AgentState)
|
1546 |
+
|
1547 |
+
# Bind the llm_model to the call_llm_with_memory_management function
|
1548 |
+
bound_call_llm = partial(call_llm_with_memory_management, llm_model=llm)
|
1549 |
+
|
1550 |
+
# Add nodes with memory-safe versions
|
1551 |
+
workflow.add_node("call_llm", bound_call_llm) # Use the bound version here
|
1552 |
+
workflow.add_node("parse_react_output", parse_react_output)
|
1553 |
+
workflow.add_node("call_tool", call_tool_with_memory_management) # Ensure this doesn't also need llm if it calls back directly
|
1554 |
+
|
1555 |
+
# Set entry point
|
1556 |
+
workflow.set_entry_point("call_llm")
|
1557 |
+
|
1558 |
+
# Add conditional edges
|
1559 |
+
workflow.add_conditional_edges(
|
1560 |
+
"call_llm",
|
1561 |
+
should_continue,
|
1562 |
+
{
|
1563 |
+
"continue": "parse_react_output",
|
1564 |
+
"end": END
|
1565 |
+
}
|
1566 |
+
)
|
1567 |
|
1568 |
+
workflow.add_conditional_edges(
|
1569 |
+
"parse_react_output",
|
1570 |
+
route_after_parse_react,
|
1571 |
+
{
|
1572 |
+
"call_tool": "call_tool",
|
1573 |
+
"call_llm": "call_llm",
|
1574 |
+
"end_processing": END
|
1575 |
+
}
|
1576 |
+
)
|
1577 |
|
1578 |
+
workflow.add_edge("call_tool", "call_llm")
|
1579 |
+
|
1580 |
+
return workflow.compile()
|
1581 |
+
|
1582 |
+
# --- Run the Agent ---
|
1583 |
+
def run_agent(myagent, state: AgentState):
|
1584 |
+
"""
|
1585 |
+
Initialize agent with proper system message and formatted query.
|
1586 |
+
"""
|
1587 |
+
#global llm, hf_pipe, model_vqa, processor_vqa
|
1588 |
+
global WIKIPEDIA_TOOL, SEARCH_TOOL, YOUTUBE_TOOL, tools
|
1589 |
+
|
1590 |
+
#ipdb.set_trace()
|
1591 |
+
|
1592 |
+
# At the module level, create instances once
|
1593 |
+
WIKIPEDIA_TOOL = WikipediaSearchToolWithFAISS()
|
1594 |
+
SEARCH_TOOL = EnhancedDuckDuckGoSearchTool(max_results=3, max_chars_per_page=3000)
|
1595 |
+
YOUTUBE_TOOL = YoutubeScreenshotQA()
|
1596 |
+
|
1597 |
+
tools = [WIKIPEDIA_TOOL, SEARCH_TOOL, YOUTUBE_TOOL]
|
1598 |
+
|
1599 |
+
# Create a fresh system message each time
|
1600 |
+
formatted_tools_description = render_text_description(tools)
|
1601 |
+
current_date_str = datetime.now().strftime("%Y-%m-%d")
|
1602 |
+
|
1603 |
+
system_content = f"""You are a general AI assistant. with access to these tools:
|
1604 |
+
|
1605 |
+
{formatted_tools_description}
|
1606 |
+
|
1607 |
+
If you need the most current information as of 2025, use enhanced_search
|
1608 |
+
If you need to do in-depth research, use wikipedia_semantic_search_all_candidates_strong_entity_priority_list_retrieval
|
1609 |
+
If you can answer the question confidently, do so directly.
|
1610 |
+
If the question seems like gibberish (not English), try flipping the entire question and re-read the question.
|
1611 |
+
If you need more information, use a tool.
|
1612 |
+
(Think through the problem step by step)
|
1613 |
+
|
1614 |
+
When using a tool, follow this format:
|
1615 |
+
Thought: <your thought>
|
1616 |
+
Action: <tool_name>
|
1617 |
+
Action Input: <tool_input>
|
1618 |
+
|
1619 |
+
Only use the tools listed above for the Action: step. Do not invent new tool names or actions. If you need to reason, do so in the Thought: step. After using a tool, process its output in your Thought: step, not as an Action.
|
1620 |
+
|
1621 |
+
Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
|
1622 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
1623 |
+
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
1624 |
+
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
1625 |
+
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string
|
1626 |
+
Do not provide disclaimers.
|
1627 |
+
Do not provide supporting details.
|
1628 |
+
|
1629 |
+
"""
|
1630 |
+
|
1631 |
+
# Get user question from AgentState
|
1632 |
+
query = state['question']
|
1633 |
+
|
1634 |
+
# Pattern for YouTube
|
1635 |
+
yt_pattern = r"(https?://)?(www\.)?(youtube\.com|youtu\.be)/[^\s]+"
|
1636 |
+
has_youtube = re.search(yt_pattern, query) is not None
|
1637 |
+
|
1638 |
+
if has_youtube:
|
1639 |
+
# Store the extracted YouTube URL in the state
|
1640 |
+
url_match = re.search(r"(https?://[^\s]+)", query)
|
1641 |
+
if url_match:
|
1642 |
+
state['youtube_url'] = url_match.group(0)
|
1643 |
|
1644 |
+
# Format the user query to guide the model better
|
1645 |
+
formatted_query = f"""{query}"""
|
1646 |
+
|
1647 |
+
# Initialize agent state with proper message types
|
1648 |
+
system_message = SystemMessage(content=system_content)
|
1649 |
+
human_message = HumanMessage(content=formatted_query)
|
1650 |
+
|
1651 |
+
# Initialize state with properly typed messages and done=False
|
1652 |
+
# state = {"messages": [system_message, human_message], "done": False}
|
1653 |
+
state['messages'] = [system_message, human_message]
|
1654 |
+
state["done"] = False
|
1655 |
+
|
1656 |
+
# Use the new method to run the graph
|
1657 |
+
result = myagent.invoke(state)
|
1658 |
+
|
1659 |
+
# Check if FINAL ANSWER was given (i.e., workflow ended)
|
1660 |
+
if result.get("done"):
|
1661 |
+
#del llm
|
1662 |
+
#del hf_pipe
|
1663 |
+
#del model_vqa
|
1664 |
+
#del processor_vqa
|
1665 |
+
torch.cuda.empty_cache()
|
1666 |
+
torch.cuda.ipc_collect()
|
1667 |
+
gc.collect()
|
1668 |
+
print("Released GPU memory after FINAL ANSWER.")
|
1669 |
+
# Re-initialize for the next run
|
1670 |
+
#hf_pipe = create_llm_pipeline()
|
1671 |
+
#llm = HuggingFacePipeline(pipeline=hf_pipe)
|
1672 |
+
#print("Re-initilized llm...")
|
1673 |
+
|
1674 |
+
# Extract and return just the messages for cleaner output
|
1675 |
+
return result["messages"]
|
1676 |
+
|
1677 |
+
|
1678 |
+
|