Spaces:
Sleeping
Sleeping
Samuel Thomas
commited on
Commit
·
82de5c7
1
Parent(s):
da40168
changes to model
Browse files
app.py
CHANGED
@@ -100,7 +100,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
100 |
task_id = hf_questions[r]['task_id']
|
101 |
question_text = hf_questions[r]['question']
|
102 |
submitted_answer = intelligent_agent(s)
|
103 |
-
answers_payload.append({"task_id": task_id, "
|
104 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
105 |
except:
|
106 |
print(f"Error running agent on task {task_id}: {e}")
|
|
|
100 |
task_id = hf_questions[r]['task_id']
|
101 |
question_text = hf_questions[r]['question']
|
102 |
submitted_answer = intelligent_agent(s)
|
103 |
+
answers_payload.append({"task_id": task_id, "model_answer": submitted_answer})
|
104 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
105 |
except:
|
106 |
print(f"Error running agent on task {task_id}: {e}")
|
tools.py
CHANGED
@@ -22,6 +22,7 @@ from langchain.schema import Document
|
|
22 |
from transformers import BlipProcessor, BlipForQuestionAnswering, pipeline
|
23 |
from io import BytesIO
|
24 |
from sentence_transformers import SentenceTransformer
|
|
|
25 |
|
26 |
|
27 |
import os
|
@@ -84,8 +85,8 @@ def write_bytes_to_temp_dir(file_bytes: bytes, file_name: str) -> str:
|
|
84 |
class State(TypedDict, total=False):
|
85 |
question: str
|
86 |
task_id: str
|
87 |
-
input_file: bytes
|
88 |
-
file_type: str
|
89 |
context: List[Document] # Using LangChain's Document class
|
90 |
file_path: Optional[str]
|
91 |
youtube_url: Optional[str]
|
@@ -94,31 +95,33 @@ class State(TypedDict, total=False):
|
|
94 |
next: Optional[str] # Added to track the next node
|
95 |
|
96 |
# --- LLM pipeline for general questions ---
|
97 |
-
llm_pipe = pipeline(
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
# Speech-to-text pipeline
|
110 |
asr_pipe = pipeline(
|
111 |
"automatic-speech-recognition",
|
112 |
model="openai/whisper-small",
|
113 |
-
device
|
114 |
-
#device_map={"", 0},
|
115 |
-
#max_memory = {0: "4.5GiB"},
|
116 |
-
#device_map="auto"
|
117 |
)
|
118 |
|
119 |
-
# ---
|
120 |
-
|
121 |
-
device = "cpu"
|
122 |
vqa_model_name = "Salesforce/blip-vqa-base"
|
123 |
processor_vqa = BlipProcessor.from_pretrained(vqa_model_name)
|
124 |
|
@@ -130,18 +133,47 @@ except torch.cuda.OutOfMemoryError:
|
|
130 |
device = "cpu" # Switch device to CPU
|
131 |
model_vqa = BlipForQuestionAnswering.from_pretrained(vqa_model_name).to(device)
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
# --- Helper: Answer question on a single frame ---
|
135 |
def answer_question_on_frame(image_path, question):
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
144 |
def answer_video_question(frames_dir, question):
|
|
|
145 |
valid_exts = ('.jpg', '.jpeg', '.png')
|
146 |
|
147 |
# Check if directory exists
|
@@ -193,8 +225,8 @@ def answer_video_question(frames_dir, question):
|
|
193 |
"answer_counts": counted
|
194 |
}
|
195 |
|
196 |
-
|
197 |
-
|
198 |
# Ensure the output directory exists
|
199 |
os.makedirs(output_dir, exist_ok=True)
|
200 |
|
@@ -209,25 +241,27 @@ def download_youtube_video(url, output_dir='tmp/content/video/', output_filename
|
|
209 |
# Set output path for yt-dlp
|
210 |
output_path = os.path.join(output_dir, output_filename)
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
'
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
227 |
|
228 |
-
# --- Helper: Extract frames from video ---
|
229 |
def extract_frames(video_path, output_dir, frame_interval_seconds=10):
|
230 |
-
|
|
|
231 |
if os.path.exists(output_dir):
|
232 |
for filename in os.listdir(output_dir):
|
233 |
file_path = os.path.join(output_dir, filename)
|
@@ -266,33 +300,23 @@ def extract_frames(video_path, output_dir, frame_interval_seconds=10):
|
|
266 |
print(f"Exception during frame extraction: {e}")
|
267 |
return False
|
268 |
|
269 |
-
def image_qa(image_path: str, question: str
|
270 |
-
"""
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
"""
|
281 |
-
# Create VQA pipeline with specified model
|
282 |
-
vqa_pipeline = pipeline("visual-question-answering", model=model_name)
|
283 |
-
|
284 |
-
# Get predictions (automatically handles local files/URLs)
|
285 |
-
results = vqa_pipeline(image=image_path, question=question, top_k=1)
|
286 |
-
|
287 |
-
# Return top answer
|
288 |
-
return results[0]['answer']
|
289 |
-
|
290 |
|
|
|
291 |
def router(state: Dict[str, Any]) -> str:
|
292 |
-
"""Determine the next node based on
|
293 |
question = state.get('question', '')
|
294 |
|
295 |
-
|
296 |
# Pattern for Wikipedia and similar sources
|
297 |
wiki_pattern = r"(wikipedia\.org|wiki|encyclopedia|britannica\.com|encyclop[a|æ]dia)"
|
298 |
has_wiki = re.search(wiki_pattern, question, re.IGNORECASE) is not None
|
@@ -327,30 +351,52 @@ def router(state: Dict[str, Any]) -> str:
|
|
327 |
else:
|
328 |
return "llm"
|
329 |
|
330 |
-
|
331 |
-
# --- Node Implementation ---
|
332 |
-
def node_image(state: Dict[str, Any]) -> Dict[str, Any]:
|
333 |
-
"""Router node that decides which node to go to next."""
|
334 |
-
print("Running node_image")
|
335 |
-
# Add the next state to the state dict
|
336 |
-
img = Image.open(state['file_path'])
|
337 |
-
state['answer'] = image_qa(state['file_path'], state['question'])
|
338 |
-
return state
|
339 |
-
|
340 |
-
|
341 |
def node_decide(state: Dict[str, Any]) -> Dict[str, Any]:
|
342 |
-
"""Router node that decides which node to go to next
|
343 |
print("Running node_decide")
|
|
|
|
|
|
|
344 |
# Add the next state to the state dict
|
345 |
state["next"] = router(state)
|
346 |
print(f"Routing to: {state['next']}")
|
347 |
return state
|
348 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
def node_video(state: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
350 |
print("Running node_video")
|
351 |
youtube_url = state.get('youtube_url')
|
352 |
if not youtube_url:
|
353 |
-
state['answer'] = "No YouTube URL found in the question."
|
354 |
return state
|
355 |
|
356 |
question = state['question']
|
@@ -361,7 +407,7 @@ def node_video(state: Dict[str, Any]) -> Dict[str, Any]:
|
|
361 |
|
362 |
video_file = download_youtube_video(youtube_url)
|
363 |
if not video_file or not os.path.exists(video_file):
|
364 |
-
state['answer'] = "Failed to download the video."
|
365 |
return state
|
366 |
|
367 |
frames_dir = "/tmp/frames"
|
@@ -369,11 +415,11 @@ def node_video(state: Dict[str, Any]) -> Dict[str, Any]:
|
|
369 |
|
370 |
success = extract_frames(video_path=video_file, output_dir=frames_dir, frame_interval_seconds=10)
|
371 |
if not success:
|
372 |
-
state['answer'] = "Failed to extract frames from the video."
|
373 |
return state
|
374 |
|
375 |
result = answer_video_question(frames_dir, question_text)
|
376 |
-
|
377 |
state['frame_answers'] = result['all_answers']
|
378 |
|
379 |
# Create Document objects for each frame analysis
|
@@ -385,15 +431,15 @@ def node_video(state: Dict[str, Any]) -> Dict[str, Any]:
|
|
385 |
)
|
386 |
frame_documents.append(doc)
|
387 |
|
388 |
-
# Add documents to state
|
389 |
-
if 'context' not in state:
|
390 |
-
state['context'] = []
|
391 |
state['context'].extend(frame_documents)
|
|
|
392 |
|
393 |
print(f"Video answer: {state['answer']}")
|
394 |
return state
|
395 |
|
396 |
def node_audio_rag(state: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
397 |
print(f"Processing audio file: {state['file_path']}")
|
398 |
|
399 |
try:
|
@@ -403,52 +449,65 @@ def node_audio_rag(state: Dict[str, Any]) -> Dict[str, Any]:
|
|
403 |
audio_transcript = asr_result['text']
|
404 |
print(f"Audio transcript: {audio_transcript}")
|
405 |
|
406 |
-
# Step 2: Store
|
407 |
transcript_doc = [Document(page_content=audio_transcript)]
|
408 |
embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-large-en-v1.5')
|
409 |
vector_db = FAISS.from_documents(transcript_doc, embedding=embeddings)
|
410 |
|
411 |
# Step 3: Retrieve relevant docs for the user's question
|
412 |
question = state['question']
|
413 |
-
similar_docs = vector_db.similarity_search(question, k=1)
|
414 |
retrieved_context = "\n".join([doc.page_content for doc in similar_docs])
|
415 |
|
416 |
-
# Step 4:
|
417 |
prompt = (
|
418 |
-
f"
|
419 |
-
f"
|
420 |
-
f"Question: {question}\
|
|
|
|
|
|
|
421 |
)
|
|
|
422 |
llm_response = llm_pipe(prompt)
|
423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
except Exception as e:
|
426 |
error_msg = f"Audio processing error: {str(e)}"
|
427 |
print(error_msg)
|
428 |
-
state['answer'] = error_msg
|
429 |
|
430 |
return state
|
431 |
|
432 |
def node_llm(state: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
433 |
print("Running node_llm")
|
434 |
question = state['question']
|
435 |
|
436 |
-
# Optionally add context from state (e.g., Wikipedia/Wikidata content)
|
437 |
-
context_text = ""
|
438 |
-
if 'article_content' in state and state['article_content']:
|
439 |
-
context_text = f"\n\nBackground Information:\n{state['article_content']}\n"
|
440 |
-
elif 'context' in state and state['context']:
|
441 |
-
context_text = "\n\n".join([doc.page_content for doc in state['context']])
|
442 |
-
|
443 |
# Compose a detailed prompt
|
444 |
prompt = (
|
445 |
-
"You are an
|
446 |
-
"
|
447 |
-
"If the
|
448 |
-
"
|
449 |
-
|
450 |
-
|
451 |
-
"
|
|
|
|
|
|
|
|
|
|
|
452 |
)
|
453 |
|
454 |
# Add document to state for traceability
|
@@ -456,102 +515,138 @@ def node_llm(state: Dict[str, Any]) -> Dict[str, Any]:
|
|
456 |
page_content=prompt,
|
457 |
metadata={"source": "llm_prompt"}
|
458 |
)
|
459 |
-
if 'context' not in state:
|
460 |
-
state['context'] = []
|
461 |
state['context'].append(query_doc)
|
462 |
|
463 |
try:
|
464 |
result = llm_pipe(prompt)
|
465 |
-
|
|
|
466 |
except Exception as e:
|
467 |
print(f"Error in LLM processing: {str(e)}")
|
468 |
-
|
|
|
469 |
|
470 |
print(f"LLM answer: {state['answer']}")
|
471 |
return state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
|
474 |
# --- Define the edge condition function ---
|
475 |
def get_next_node(state: Dict[str, Any]) -> str:
|
476 |
-
"""Get the next node from the state
|
477 |
return state["next"]
|
478 |
|
479 |
-
|
480 |
-
# 2. Improved Wikipedia Retrieval Node
|
481 |
-
def extract_keywords(question: str) -> List[str]:
|
482 |
-
doc = nlp(question)
|
483 |
-
keywords = [token.text for token in doc if token.pos_ in ("PROPN", "NOUN")] # Extract proper nouns and nouns
|
484 |
-
return keywords
|
485 |
-
|
486 |
-
def extract_entities(question: str) -> List[str]:
|
487 |
-
doc = nlp(question)
|
488 |
-
entities = [ent.text for ent in doc.ents]
|
489 |
-
return entities if entities else [token.text for token in doc if token.pos_ in ("PROPN", "NOUN")]
|
490 |
-
|
491 |
-
|
492 |
-
def retrieve(state: State) -> dict:
|
493 |
-
keywords = extract_entities(state["question"])
|
494 |
-
query = " ".join(keywords)
|
495 |
-
search_results = wikipedia.search(query)
|
496 |
-
selected_page = search_results[0] if search_results else None
|
497 |
-
|
498 |
-
if selected_page:
|
499 |
-
loader = WikipediaLoader(
|
500 |
-
query=selected_page,
|
501 |
-
lang="en",
|
502 |
-
load_max_docs=1,
|
503 |
-
doc_content_chars_max=100000,
|
504 |
-
load_all_available_meta=True
|
505 |
-
)
|
506 |
-
docs = loader.load()
|
507 |
-
# Chunk the article for finer retrieval
|
508 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
509 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)
|
510 |
-
all_chunks = []
|
511 |
-
for doc in docs:
|
512 |
-
chunks = splitter.split_text(doc.page_content)
|
513 |
-
all_chunks.extend([Document(page_content=chunk) for chunk in chunks])
|
514 |
-
# Optionally: re-rank or filter chunks here
|
515 |
-
return {"context": all_chunks}
|
516 |
-
else:
|
517 |
-
return {"context": []}
|
518 |
-
|
519 |
-
# 3. Prompt Template for General QA
|
520 |
-
prompt = PromptTemplate(
|
521 |
-
input_variables=["question", "context"],
|
522 |
-
template=(
|
523 |
-
"You are an expert researcher. Given the following context from Wikipedia, answer the user's question as accurately as possible. "
|
524 |
-
"If the text appears to be scrambled, try to unscramble the text for the user"
|
525 |
-
"If the information is incomplete or ambiguous, provide your best estimate based on the available evidence, and clearly explain any assumptions or reasoning you use. "
|
526 |
-
"If the answer requires multiple steps or deeper analysis, break down the question into sub-questions and answer them step by step, citing the relevant context for each step."
|
527 |
-
"Context:\n{context}\n\n"
|
528 |
-
"Question: {question}\n\n"
|
529 |
-
"Best Estimate Answer:"
|
530 |
-
)
|
531 |
-
)
|
532 |
-
|
533 |
-
"""
|
534 |
-
def generate(state: State) -> dict:
|
535 |
-
# Concatenate all context documents into a single string
|
536 |
-
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
|
537 |
-
# Format the prompt for the LLM
|
538 |
-
prompt_str = prompt.format(question=state["question"], context=docs_content)
|
539 |
-
# Generate answer
|
540 |
-
response = llm.invoke(prompt_str)
|
541 |
-
return {"answer": response}
|
542 |
-
"""
|
543 |
-
|
544 |
-
def generate(state: dict) -> dict:
|
545 |
-
# Concatenate all context documents into a single string
|
546 |
-
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
|
547 |
-
# Format the prompt for the LLM
|
548 |
-
prompt_str = prompt.format(question=state["question"], context=docs_content)
|
549 |
-
# Generate answer using Hugging Face pipeline
|
550 |
-
response = llm_pipe(prompt_str)
|
551 |
-
# Extract generated text
|
552 |
-
answer = response[0]["generated_text"]
|
553 |
-
return {"answer": answer}
|
554 |
-
|
555 |
# Create the StateGraph
|
556 |
graph = StateGraph(State)
|
557 |
|
@@ -568,7 +663,7 @@ graph.add_node("audio", node_audio_rag)
|
|
568 |
graph.add_edge(START, "decide")
|
569 |
graph.add_edge("retrieve", "generate")
|
570 |
|
571 |
-
# Add conditional edges from decide to
|
572 |
graph.add_conditional_edges(
|
573 |
"decide",
|
574 |
get_next_node,
|
@@ -581,7 +676,7 @@ graph.add_conditional_edges(
|
|
581 |
}
|
582 |
)
|
583 |
|
584 |
-
# Add edges from
|
585 |
graph.add_edge("video", END)
|
586 |
graph.add_edge("llm", END)
|
587 |
graph.add_edge("generate", END)
|
@@ -591,14 +686,33 @@ graph.add_edge("audio", END)
|
|
591 |
# Compile the graph
|
592 |
agent = graph.compile()
|
593 |
|
594 |
-
# ---
|
595 |
def intelligent_agent(state: State) -> str:
|
596 |
"""Process a question using the appropriate pipeline based on content."""
|
597 |
-
#state = State(question= question)
|
598 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
599 |
final_state = agent.invoke(state)
|
600 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
601 |
except Exception as e:
|
602 |
print(f"Error in agent execution: {str(e)}")
|
603 |
-
return f"An error occurred
|
604 |
-
|
|
|
22 |
from transformers import BlipProcessor, BlipForQuestionAnswering, pipeline
|
23 |
from io import BytesIO
|
24 |
from sentence_transformers import SentenceTransformer
|
25 |
+
from transformers import RagRetriever, RagTokenizer, RagSequenceForGeneration
|
26 |
|
27 |
|
28 |
import os
|
|
|
85 |
class State(TypedDict, total=False):
|
86 |
question: str
|
87 |
task_id: str
|
88 |
+
input_file: Optional[bytes]
|
89 |
+
file_type: Optional[str]
|
90 |
context: List[Document] # Using LangChain's Document class
|
91 |
file_path: Optional[str]
|
92 |
youtube_url: Optional[str]
|
|
|
95 |
next: Optional[str] # Added to track the next node
|
96 |
|
97 |
# --- LLM pipeline for general questions ---
|
98 |
+
llm_pipe = pipeline(
|
99 |
+
"text-generation",
|
100 |
+
model="microsoft/Phi-3-mini-4k-instruct",
|
101 |
+
device_map=0,
|
102 |
+
torch_dtype="auto",
|
103 |
+
max_new_tokens=256
|
104 |
+
)
|
105 |
+
|
106 |
+
# Initialize RAG components
|
107 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
|
108 |
+
retriever = RagRetriever.from_pretrained(
|
109 |
+
"facebook/rag-token-base",
|
110 |
+
index_name="exact", # or "legacy" for legacy FAISS index
|
111 |
+
use_dummy_dataset=False, # set to False and download the full index for real Wikipedia retrieval
|
112 |
+
trust_remote_code=True
|
113 |
+
)
|
114 |
+
rag_model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-base", retriever=retriever)
|
115 |
|
116 |
# Speech-to-text pipeline
|
117 |
asr_pipe = pipeline(
|
118 |
"automatic-speech-recognition",
|
119 |
model="openai/whisper-small",
|
120 |
+
device=0
|
|
|
|
|
|
|
121 |
)
|
122 |
|
123 |
+
# --- BLIP VQA setup ---
|
124 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
125 |
vqa_model_name = "Salesforce/blip-vqa-base"
|
126 |
processor_vqa = BlipProcessor.from_pretrained(vqa_model_name)
|
127 |
|
|
|
133 |
device = "cpu" # Switch device to CPU
|
134 |
model_vqa = BlipForQuestionAnswering.from_pretrained(vqa_model_name).to(device)
|
135 |
|
136 |
+
# --- Helper functions ---
|
137 |
+
def ensure_final_answer_format(answer_text: str) -> str:
|
138 |
+
"""Ensure the answer ends with FINAL ANSWER: format"""
|
139 |
+
# Check if the answer already contains a FINAL ANSWER section
|
140 |
+
if "FINAL ANSWER:" in answer_text:
|
141 |
+
# Extract everything after FINAL ANSWER:
|
142 |
+
final_answer_part = answer_text.split("FINAL ANSWER:", 1)[1].strip()
|
143 |
+
return f"FINAL ANSWER: {final_answer_part}"
|
144 |
+
else:
|
145 |
+
# If no FINAL ANSWER section exists, wrap the entire answer
|
146 |
+
return f"FINAL ANSWER: {answer_text.strip()}"
|
147 |
+
|
148 |
+
def extract_entities(text: str) -> List[str]:
|
149 |
+
"""Extract key entities from text using spaCy if available, or regex fallback"""
|
150 |
+
if nlp:
|
151 |
+
# Using spaCy for better entity extraction
|
152 |
+
doc = nlp(text)
|
153 |
+
entities = [ent.text for ent in doc.ents]
|
154 |
+
keywords = [token.text for token in doc if token.pos_ in ("PROPN", "NOUN")]
|
155 |
+
return entities if entities else keywords
|
156 |
+
else:
|
157 |
+
# Simple fallback using regex to extract potential keywords
|
158 |
+
words = text.lower().split()
|
159 |
+
stopwords = ["what", "who", "when", "where", "why", "how", "is", "are", "the", "a", "an", "of", "in", "on", "at"]
|
160 |
+
keywords = [word for word in words if word not in stopwords and len(word) > 2]
|
161 |
+
return keywords
|
162 |
|
|
|
163 |
def answer_question_on_frame(image_path, question):
|
164 |
+
"""Answer a question about a single video frame using BLIP"""
|
165 |
+
try:
|
166 |
+
image = Image.open(image_path).convert('RGB')
|
167 |
+
inputs = processor_vqa(image, question, return_tensors="pt").to(device)
|
168 |
+
out = model_vqa.generate(**inputs)
|
169 |
+
answer = processor_vqa.decode(out[0], skip_special_tokens=True)
|
170 |
+
return answer
|
171 |
+
except Exception as e:
|
172 |
+
print(f"Error processing frame {image_path}: {str(e)}")
|
173 |
+
return "Error processing this frame"
|
174 |
+
|
175 |
def answer_video_question(frames_dir, question):
|
176 |
+
"""Answer a question about a video by analyzing extracted frames"""
|
177 |
valid_exts = ('.jpg', '.jpeg', '.png')
|
178 |
|
179 |
# Check if directory exists
|
|
|
225 |
"answer_counts": counted
|
226 |
}
|
227 |
|
228 |
+
def download_youtube_video(url, output_dir='/tmp/video/', output_filename='downloaded_video.mp4'):
|
229 |
+
"""Download a YouTube video using yt-dlp"""
|
230 |
# Ensure the output directory exists
|
231 |
os.makedirs(output_dir, exist_ok=True)
|
232 |
|
|
|
241 |
# Set output path for yt-dlp
|
242 |
output_path = os.path.join(output_dir, output_filename)
|
243 |
|
244 |
+
try:
|
245 |
+
ydl_opts = {
|
246 |
+
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
|
247 |
+
'outtmpl': output_path,
|
248 |
+
'quiet': True,
|
249 |
+
'merge_output_format': 'mp4', # Ensures merged output is mp4
|
250 |
+
'postprocessors': [{
|
251 |
+
'key': 'FFmpegVideoConvertor',
|
252 |
+
'preferedformat': 'mp4', # Recode if needed
|
253 |
+
}]
|
254 |
+
}
|
255 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
256 |
+
ydl.download([url])
|
257 |
+
return output_path
|
258 |
+
except Exception as e:
|
259 |
+
print(f"Error downloading YouTube video: {str(e)}")
|
260 |
+
return None
|
261 |
|
|
|
262 |
def extract_frames(video_path, output_dir, frame_interval_seconds=10):
|
263 |
+
"""Extract frames from a video file at specified intervals"""
|
264 |
+
# Clean output directory before extracting new frames
|
265 |
if os.path.exists(output_dir):
|
266 |
for filename in os.listdir(output_dir):
|
267 |
file_path = os.path.join(output_dir, filename)
|
|
|
300 |
print(f"Exception during frame extraction: {e}")
|
301 |
return False
|
302 |
|
303 |
+
def image_qa(image_path: str, question: str) -> str:
|
304 |
+
"""Answer questions about an image using the BLIP model"""
|
305 |
+
try:
|
306 |
+
image = Image.open(image_path).convert('RGB')
|
307 |
+
inputs = processor_vqa(image, question, return_tensors="pt").to(device)
|
308 |
+
out = model_vqa.generate(**inputs)
|
309 |
+
answer = processor_vqa.decode(out[0], skip_special_tokens=True)
|
310 |
+
return answer
|
311 |
+
except Exception as e:
|
312 |
+
print(f"Error in image_qa: {str(e)}")
|
313 |
+
return f"Error processing image: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
+
# --- Node functions ---
|
316 |
def router(state: Dict[str, Any]) -> str:
|
317 |
+
"""Determine the next node based on question content and file type"""
|
318 |
question = state.get('question', '')
|
319 |
|
|
|
320 |
# Pattern for Wikipedia and similar sources
|
321 |
wiki_pattern = r"(wikipedia\.org|wiki|encyclopedia|britannica\.com|encyclop[a|æ]dia)"
|
322 |
has_wiki = re.search(wiki_pattern, question, re.IGNORECASE) is not None
|
|
|
351 |
else:
|
352 |
return "llm"
|
353 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
def node_decide(state: Dict[str, Any]) -> Dict[str, Any]:
|
355 |
+
"""Router node that decides which node to go to next"""
|
356 |
print("Running node_decide")
|
357 |
+
# Initialize context list if not present
|
358 |
+
if 'context' not in state:
|
359 |
+
state['context'] = []
|
360 |
# Add the next state to the state dict
|
361 |
state["next"] = router(state)
|
362 |
print(f"Routing to: {state['next']}")
|
363 |
return state
|
364 |
|
365 |
+
def node_image(state: Dict[str, Any]) -> Dict[str, Any]:
|
366 |
+
"""Process image-based questions"""
|
367 |
+
print("Running node_image")
|
368 |
+
try:
|
369 |
+
# Make sure the image file exists
|
370 |
+
if not os.path.exists(state['file_path']):
|
371 |
+
state['answer'] = ensure_final_answer_format("Image file not found.")
|
372 |
+
return state
|
373 |
+
|
374 |
+
# Get answer from image QA model
|
375 |
+
answer = image_qa(state['file_path'], state['question'])
|
376 |
+
|
377 |
+
# Format the final answer
|
378 |
+
state['answer'] = ensure_final_answer_format(answer)
|
379 |
+
|
380 |
+
# Add document to state for traceability
|
381 |
+
image_doc = Document(
|
382 |
+
page_content=f"Image analysis result: {answer}",
|
383 |
+
metadata={"source": "image_analysis", "file_path": state['file_path']}
|
384 |
+
)
|
385 |
+
state['context'].append(image_doc)
|
386 |
+
|
387 |
+
except Exception as e:
|
388 |
+
error_msg = f"Error processing image: {str(e)}"
|
389 |
+
print(error_msg)
|
390 |
+
state['answer'] = ensure_final_answer_format(error_msg)
|
391 |
+
|
392 |
+
return state
|
393 |
+
|
394 |
def node_video(state: Dict[str, Any]) -> Dict[str, Any]:
|
395 |
+
"""Process video-based questions"""
|
396 |
print("Running node_video")
|
397 |
youtube_url = state.get('youtube_url')
|
398 |
if not youtube_url:
|
399 |
+
state['answer'] = ensure_final_answer_format("No YouTube URL found in the question.")
|
400 |
return state
|
401 |
|
402 |
question = state['question']
|
|
|
407 |
|
408 |
video_file = download_youtube_video(youtube_url)
|
409 |
if not video_file or not os.path.exists(video_file):
|
410 |
+
state['answer'] = ensure_final_answer_format("Failed to download the video.")
|
411 |
return state
|
412 |
|
413 |
frames_dir = "/tmp/frames"
|
|
|
415 |
|
416 |
success = extract_frames(video_path=video_file, output_dir=frames_dir, frame_interval_seconds=10)
|
417 |
if not success:
|
418 |
+
state['answer'] = ensure_final_answer_format("Failed to extract frames from the video.")
|
419 |
return state
|
420 |
|
421 |
result = answer_video_question(frames_dir, question_text)
|
422 |
+
final_answer = result['most_common_answer']
|
423 |
state['frame_answers'] = result['all_answers']
|
424 |
|
425 |
# Create Document objects for each frame analysis
|
|
|
431 |
)
|
432 |
frame_documents.append(doc)
|
433 |
|
434 |
+
# Add documents to state
|
|
|
|
|
435 |
state['context'].extend(frame_documents)
|
436 |
+
state['answer'] = ensure_final_answer_format(final_answer)
|
437 |
|
438 |
print(f"Video answer: {state['answer']}")
|
439 |
return state
|
440 |
|
441 |
def node_audio_rag(state: Dict[str, Any]) -> Dict[str, Any]:
|
442 |
+
"""Process audio-based questions"""
|
443 |
print(f"Processing audio file: {state['file_path']}")
|
444 |
|
445 |
try:
|
|
|
449 |
audio_transcript = asr_result['text']
|
450 |
print(f"Audio transcript: {audio_transcript}")
|
451 |
|
452 |
+
# Step 2: Store transcript in vector store
|
453 |
transcript_doc = [Document(page_content=audio_transcript)]
|
454 |
embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-large-en-v1.5')
|
455 |
vector_db = FAISS.from_documents(transcript_doc, embedding=embeddings)
|
456 |
|
457 |
# Step 3: Retrieve relevant docs for the user's question
|
458 |
question = state['question']
|
459 |
+
similar_docs = vector_db.similarity_search(question, k=1)
|
460 |
retrieved_context = "\n".join([doc.page_content for doc in similar_docs])
|
461 |
|
462 |
+
# Step 4: Generate answer
|
463 |
prompt = (
|
464 |
+
f"You are an AI assistant that answers questions about audio content.\n\n"
|
465 |
+
f"Audio transcript: {retrieved_context}\n\n"
|
466 |
+
f"Question: {question}\n\n"
|
467 |
+
f"Based only on the provided audio transcript, answer the question. "
|
468 |
+
f"If the transcript does not contain relevant information, state that clearly.\n\n"
|
469 |
+
f"End your response with 'FINAL ANSWER: ' followed by a concise answer."
|
470 |
)
|
471 |
+
|
472 |
llm_response = llm_pipe(prompt)
|
473 |
+
answer_text = llm_response[0]['generated_text']
|
474 |
+
|
475 |
+
# Add documents to state
|
476 |
+
state['context'].extend(transcript_doc)
|
477 |
+
state['context'].append(Document(
|
478 |
+
page_content=prompt,
|
479 |
+
metadata={"source": "audio_analysis_prompt"}
|
480 |
+
))
|
481 |
+
|
482 |
+
# Ensure final answer format
|
483 |
+
state['answer'] = ensure_final_answer_format(answer_text)
|
484 |
|
485 |
except Exception as e:
|
486 |
error_msg = f"Audio processing error: {str(e)}"
|
487 |
print(error_msg)
|
488 |
+
state['answer'] = ensure_final_answer_format(error_msg)
|
489 |
|
490 |
return state
|
491 |
|
492 |
def node_llm(state: Dict[str, Any]) -> Dict[str, Any]:
|
493 |
+
"""Process general knowledge questions with LLM"""
|
494 |
print("Running node_llm")
|
495 |
question = state['question']
|
496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
# Compose a detailed prompt
|
498 |
prompt = (
|
499 |
+
"You are an AI assistant that answers questions using your general knowledge. "
|
500 |
+
"Follow these steps:\n\n"
|
501 |
+
"1. If the question appears to be scrambled or jumbled, first try to unscramble or reconstruct the intended meaning.\n"
|
502 |
+
"2. Analyze the question (unscrambled if needed) and use your own knowledge to answer it.\n"
|
503 |
+
"3. If the question can't be answered with certainty, provide your best estimate and clearly explain any assumptions.\n"
|
504 |
+
"4. Format your answer using these rules:\n"
|
505 |
+
" - Numbers: Plain digits without commas/units (e.g. 1234567)\n"
|
506 |
+
" - Strings: Minimal words, no articles/abbreviations\n"
|
507 |
+
" - Lists: comma-separated values without extra formatting\n\n"
|
508 |
+
"5. Always conclude with:\n"
|
509 |
+
"FINAL ANSWER: [your answer] (replace bracketed text)\n\n"
|
510 |
+
f"Current question: {question}"
|
511 |
)
|
512 |
|
513 |
# Add document to state for traceability
|
|
|
515 |
page_content=prompt,
|
516 |
metadata={"source": "llm_prompt"}
|
517 |
)
|
|
|
|
|
518 |
state['context'].append(query_doc)
|
519 |
|
520 |
try:
|
521 |
result = llm_pipe(prompt)
|
522 |
+
answer_text = result[0]['generated_text']
|
523 |
+
state['answer'] = ensure_final_answer_format(answer_text)
|
524 |
except Exception as e:
|
525 |
print(f"Error in LLM processing: {str(e)}")
|
526 |
+
error_msg = f"An error occurred while processing your question: {str(e)}"
|
527 |
+
state['answer'] = ensure_final_answer_format(error_msg)
|
528 |
|
529 |
print(f"LLM answer: {state['answer']}")
|
530 |
return state
|
531 |
+
def retrieve(state: State) -> State:
|
532 |
+
"""Retrieve relevant documents using RAG"""
|
533 |
+
print("Running retrieve")
|
534 |
+
question = state["question"]
|
535 |
+
|
536 |
+
try:
|
537 |
+
# Tokenize the question
|
538 |
+
inputs = tokenizer(question, return_tensors="pt")
|
539 |
+
|
540 |
+
# Get doc_ids by using the retriever directly
|
541 |
+
question_hidden_states = rag_model.question_encoder(inputs["input_ids"])[0]
|
542 |
+
docs_dict = retriever(
|
543 |
+
inputs["input_ids"].numpy(),
|
544 |
+
question_hidden_states.detach().numpy(),
|
545 |
+
return_tensors="pt"
|
546 |
+
)
|
547 |
+
|
548 |
+
# Extract the retrieved passages
|
549 |
+
all_chunks = []
|
550 |
+
|
551 |
+
# Debug print to see what's in docs_dict
|
552 |
+
print(f"docs_dict keys: {docs_dict.keys()}")
|
553 |
+
|
554 |
+
# Check for different possible keys that might contain the documents
|
555 |
+
doc_text_key = None
|
556 |
+
for possible_key in ['retrieved_doc_text', 'doc_text', 'texts', 'documents']:
|
557 |
+
if possible_key in docs_dict:
|
558 |
+
doc_text_key = possible_key
|
559 |
+
break
|
560 |
+
|
561 |
+
if doc_text_key:
|
562 |
+
# Access the retrieved document texts from the docs_dict
|
563 |
+
for i in range(len(docs_dict["doc_ids"][0])):
|
564 |
+
doc_text = docs_dict[doc_text_key][0][i]
|
565 |
+
all_chunks.append(Document(page_content=doc_text))
|
566 |
+
|
567 |
+
print(f"Retrieved {len(all_chunks)} documents")
|
568 |
+
else:
|
569 |
+
# Fallback: Try to extract document text from doc_ids
|
570 |
+
doc_ids = docs_dict.get("doc_ids", [[]])[0]
|
571 |
+
print(f"Retrieved doc_ids: {doc_ids}")
|
572 |
+
|
573 |
+
# Create minimal document stubs from IDs
|
574 |
+
for doc_id in doc_ids:
|
575 |
+
stub_text = f"Information related to document ID: {doc_id}"
|
576 |
+
all_chunks.append(Document(page_content=stub_text))
|
577 |
+
|
578 |
+
print(f"Created {len(all_chunks)} document stubs from IDs")
|
579 |
+
|
580 |
+
# Add documents to state context
|
581 |
+
if not state.get('context'):
|
582 |
+
state['context'] = []
|
583 |
+
state['context'].extend(all_chunks)
|
584 |
+
|
585 |
+
except Exception as e:
|
586 |
+
print(f"Error in retrieval: {str(e)}")
|
587 |
+
# Create an error document
|
588 |
+
error_doc = Document(
|
589 |
+
page_content=f"Error during retrieval: {str(e)}",
|
590 |
+
metadata={"source": "retrieval_error"}
|
591 |
+
)
|
592 |
+
if not state.get('context'):
|
593 |
+
state['context'] = []
|
594 |
+
state['context'].append(error_doc)
|
595 |
+
|
596 |
+
return state
|
597 |
|
598 |
+
def generate(state: State) -> State:
|
599 |
+
"""Generate an answer based on retrieved documents"""
|
600 |
+
print("Running generate")
|
601 |
+
|
602 |
+
try:
|
603 |
+
# Check if context exists
|
604 |
+
if not state.get('context') or len(state['context']) == 0:
|
605 |
+
state['answer'] = ensure_final_answer_format("No relevant information found to answer your question.")
|
606 |
+
return state
|
607 |
+
|
608 |
+
# Concatenate all context documents into a single string
|
609 |
+
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
|
610 |
+
|
611 |
+
# Format the prompt for the LLM
|
612 |
+
prompt_str = PromptTemplate(
|
613 |
+
input_variables=["question", "context"],
|
614 |
+
template=(
|
615 |
+
"You are an AI assistant that answers questions using retrieved context. "
|
616 |
+
"Follow these steps:\n\n"
|
617 |
+
"1. Analyze the provided context:\n{context}\n\n"
|
618 |
+
"2. If the context contains scrambled text, first attempt to reconstruct meaningful information\n"
|
619 |
+
"3. If the question can't be answered from context alone, combine context with general knowledge "
|
620 |
+
"but clearly state this limitation\n"
|
621 |
+
"4. Format your answer using these rules:\n"
|
622 |
+
" - Numbers: Plain digits without commas/units (e.g. 1234567)\n"
|
623 |
+
" - Strings: Minimal words, no articles/abbreviations\n"
|
624 |
+
" - Lists: comma-separated values without extra formatting\n\n"
|
625 |
+
"5. Always conclude with:\n"
|
626 |
+
"FINAL ANSWER: [your answer] (replace bracketed text)\n\n"
|
627 |
+
"Current question: {question}"
|
628 |
+
)
|
629 |
+
).format(question=state["question"], context=docs_content)
|
630 |
+
|
631 |
+
# Generate answer using the LLM pipeline
|
632 |
+
response = llm_pipe(prompt_str)
|
633 |
+
answer_text = response[0]["generated_text"]
|
634 |
+
|
635 |
+
# Ensure answer has the FINAL ANSWER format
|
636 |
+
state['answer'] = ensure_final_answer_format(answer_text)
|
637 |
+
|
638 |
+
except Exception as e:
|
639 |
+
print(f"Error in generate node: {str(e)}")
|
640 |
+
error_msg = f"Error generating answer: {str(e)}"
|
641 |
+
state['answer'] = ensure_final_answer_format(error_msg)
|
642 |
+
|
643 |
+
return state
|
644 |
|
645 |
# --- Define the edge condition function ---
|
646 |
def get_next_node(state: Dict[str, Any]) -> str:
|
647 |
+
"""Get the next node from the state"""
|
648 |
return state["next"]
|
649 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
650 |
# Create the StateGraph
|
651 |
graph = StateGraph(State)
|
652 |
|
|
|
663 |
graph.add_edge(START, "decide")
|
664 |
graph.add_edge("retrieve", "generate")
|
665 |
|
666 |
+
# Add conditional edges from decide to other nodes based on question
|
667 |
graph.add_conditional_edges(
|
668 |
"decide",
|
669 |
get_next_node,
|
|
|
676 |
}
|
677 |
)
|
678 |
|
679 |
+
# Add edges from all terminal nodes to END
|
680 |
graph.add_edge("video", END)
|
681 |
graph.add_edge("llm", END)
|
682 |
graph.add_edge("generate", END)
|
|
|
686 |
# Compile the graph
|
687 |
agent = graph.compile()
|
688 |
|
689 |
+
# --- Intelligent Agent Function ---
|
690 |
def intelligent_agent(state: State) -> str:
|
691 |
"""Process a question using the appropriate pipeline based on content."""
|
|
|
692 |
try:
|
693 |
+
# Ensure state has proper structure
|
694 |
+
if not isinstance(state, dict):
|
695 |
+
return "FINAL ANSWER: Error - input must be a valid State dictionary"
|
696 |
+
|
697 |
+
# Make sure question exists
|
698 |
+
if 'question' not in state:
|
699 |
+
return "FINAL ANSWER: Error - question is required"
|
700 |
+
|
701 |
+
# Initialize context if not present
|
702 |
+
if 'context' not in state:
|
703 |
+
state['context'] = []
|
704 |
+
|
705 |
+
print(f"Processing question: {state['question']}")
|
706 |
+
|
707 |
+
# Invoke the agent with the state
|
708 |
final_state = agent.invoke(state)
|
709 |
+
|
710 |
+
# Ensure answer has FINAL ANSWER format
|
711 |
+
answer = final_state.get('answer', "No answer found.")
|
712 |
+
formatted_answer = ensure_final_answer_format(answer)
|
713 |
+
|
714 |
+
return formatted_answer
|
715 |
+
|
716 |
except Exception as e:
|
717 |
print(f"Error in agent execution: {str(e)}")
|
718 |
+
return f"FINAL ANSWER: An error occurred - {str(e)}"
|
|