import gradio as gr from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") def predict(text): return pipe(text)[0]["translation_text"] demo = gr.Interface( fn=predict, inputs='text', outputs='text', ) demo.launch() """ import gradio as gr import random from smolagents import GradioUI, CodeAgent, HfApiModel # Import our custom tools from their modules from tools import DuckDuckGoSearchTool, WeatherInfoTool, HubStatsTool from retriever import load_guest_dataset # Initialize the Hugging Face model model = HfApiModel() # Initialize the web search tool search_tool = DuckDuckGoSearchTool() # Initialize the weather tool weather_info_tool = WeatherInfoTool() # Initialize the Hub stats tool hub_stats_tool = HubStatsTool() # Load the guest dataset and initialize the guest info tool guest_info_tool = load_guest_dataset() # Create Alfred with all the tools alfred = CodeAgent( tools=[guest_info_tool, weather_info_tool, hub_stats_tool, search_tool], model=model, add_base_tools=True, # Add any additional base tools planning_interval=3 # Enable planning every 3 steps ) if __name__ == "__main__": #GradioUI(alfred).launch() # Example query Alfred might receive during the gala response = alfred.run("What is Facebook and what's their most popular model?") print("🎩 Alfred's Response:") print(response) """