import os
import sys
import gradio as gr
from PIL import Image
import tempfile
import shutil
from pathlib import Path
from kraken.lib import vgsl
from kraken.lib import models
from kraken import serialization
import logging
import numpy as np
import cv2
from kraken import blla, rpred
from kraken.containers import BaselineLine
import json
from jinja2 import Environment, FileSystemLoader
import base64
import io
from jinja2 import Template
import re
import time
# Configure logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.WARNING)
logging.getLogger('kraken').setLevel(logging.WARNING)
logging.getLogger('kraken.serialization').setLevel(logging.WARNING)
logging.getLogger('kraken.blla').setLevel(logging.WARNING)
logging.getLogger('kraken.lib.models').setLevel(logging.WARNING)
# Constants - Use relative paths for Hugging Face
MODELS_DIR = Path("models")
SEG_MODELS_DIR = MODELS_DIR / "seg"
REC_MODELS_DIR = MODELS_DIR / "rec"
# Embedded template
PAGEXML_TEMPLATE = '''{%+ macro render_line(line) +%}
{% if line.boundary %}
{% endif %}
{% if line.baseline %}
{% endif %}
{% if line.text is string %}
{{ line.text|e }}
{% else %}
{% for segment in line.recognition %}
{% if segment.boundary %}
{% else %}
{% endif %}
{% for char in segment.recognition %}
{{ char.text|e }}
{% endfor %}
{{ segment.text|e }}
{% endfor %}
{%+ if line.confidences|length %}{% for segment in line.recognition %}{{ segment.text|e }}{% endfor %} {% endif +%}
{% endif %}
{%+ endmacro %}
kraken {{ metadata.version }}
{{ page.date }}
{{ page.date }}
{% for entity in page.entities %}
{% if entity.type == "region" %}
{% if loop.previtem and loop.previtem.type == 'line' %}
{% endif %}
{% if entity.boundary %} {% endif %}
{%- for line in entity.lines -%}
{{ render_line(line) }}
{%- endfor %}
{% else %}
{% if not loop.previtem or loop.previtem.type != 'line' %}
{% endif %}
{{ render_line(entity) }}
{% if loop.last %}
{% endif %}
{% endif %}
{% endfor %}
'''
# Create Jinja environment
TEMPLATE_DIR = Path("templates")
TEMPLATE_DIR.mkdir(exist_ok=True)
_ENV = Environment(loader=FileSystemLoader(str(TEMPLATE_DIR)))
def seg_rec_image(image_path, seg_model, rec_model, output_dir=None):
try:
im = Image.open(image_path)
baseline_seg = blla.segment(im, model=seg_model)
# Run recognition and collect full BaselineOCRRecord objects
pred_it = rpred.rpred(network=rec_model, im=im, bounds=baseline_seg, pad=16)
records = [record for record in pred_it]
# Attach recognition results to segmentation lines
for line, rec_line in zip(baseline_seg.lines, records):
# Debug logging for recognition results
logger.debug(f'Recognition result - Prediction: {rec_line.prediction}')
logger.debug(f'Recognition result - Confidences: {rec_line.confidences}')
# Ensure the line has both prediction and confidence values
line.prediction = rec_line.prediction
line.text = rec_line.prediction # Set text field for serialization
# Store per-character confidences
line.confidences = rec_line.confidences # Keep the list of confidences
# Debug logging for line object
logger.debug(f'Line {line.id} - Prediction: {line.prediction}')
logger.debug(f'Line {line.id} - Confidences: {line.confidences}')
# Construct PAGE-XML segmentation only data
pagexml_seg_only = serialization.serialize(baseline_seg, image_size=im.size, template='pagexml', sub_line_segmentation=False)
# Serialize with recognition results
pagexml = serialization.serialize(baseline_seg,
image_size=im.size,
template='custom_pagexml',
template_source='custom',
sub_line_segmentation=False)
base_name = os.path.splitext(os.path.basename(image_path))[0]
if output_dir:
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, base_name + '.xml')
else:
output_path = os.path.splitext(image_path)[0] + '.xml'
with open(output_path, 'w') as fp:
fp.write(pagexml)
print(f"✅ Segmented/recognized: {os.path.basename(image_path)} → {os.path.basename(output_path)}")
except Exception as e:
print(f"❌ Failed to process {image_path}: {e}")
import traceback
traceback.print_exc()
# Create template files
def create_templates():
"""Create Jinja templates for visualization."""
# Image template with SVG for visualization
image_template = """
{% for line in lines %}
{% endfor %}
{% for line in lines %}
{{ loop.index }}:
{{ line.text }}
{% if line.confidence %}
({{ "%.2f"|format(line.confidence) }})
{% endif %}
{% endfor %}
"""
# Transcription template
transcription_template = """
{% for line in lines %}
{{ loop.index }}:
{{ line.text }}
{% if line.confidence %}
({{ "%.2f"|format(line.confidence) }})
{% endif %}
{% endfor %}
"""
# Write templates
with open(TEMPLATE_DIR / "image.html", "w") as f:
f.write(image_template)
with open(TEMPLATE_DIR / "transcription.html", "w") as f:
f.write(transcription_template)
def ensure_template_exists():
"""Create the template file if it doesn't exist."""
template_path = os.path.join(os.path.dirname(__file__), 'custom_pagexml')
if not os.path.exists(template_path):
with open(template_path, 'w', encoding='utf-8') as f:
f.write(PAGEXML_TEMPLATE)
def get_model_files(directory):
"""Get list of .mlmodel files from directory."""
return [f for f in os.listdir(directory) if f.endswith('.mlmodel')]
def load_models():
"""Load all available models."""
seg_models = {}
rec_models = {}
# Load segmentation models
for model_file in get_model_files(SEG_MODELS_DIR):
try:
model_path = os.path.join(SEG_MODELS_DIR, model_file)
seg_models[model_file] = vgsl.TorchVGSLModel.load_model(model_path)
except Exception as e:
print(f"Error loading segmentation model {model_file}: {str(e)}")
# Load recognition models
for model_file in get_model_files(REC_MODELS_DIR):
try:
model_path = os.path.join(REC_MODELS_DIR, model_file)
rec_models[model_file] = models.load_any(model_path)
except Exception as e:
print(f"Error loading recognition model {model_file}: {str(e)}")
return seg_models, rec_models
def process_image(image, seg_model, rec_model):
"""Process image and return segmentation and recognition results."""
# Run segmentation
baseline_seg = blla.segment(image, model=seg_model)
# Run recognition
pred_it = rpred.rpred(network=rec_model, im=image, bounds=baseline_seg, pad=16)
records = [record for record in pred_it]
# Attach recognition results to segmentation lines
for line, rec_line in zip(baseline_seg.lines, records):
line.prediction = rec_line.prediction
line.text = rec_line.prediction
line.confidences = rec_line.confidences
return baseline_seg
def render_image(image, baseline_seg):
"""Render image with SVG overlay."""
# Convert image to base64
buffered = io.BytesIO()
image.save(buffered, format="PNG")
image_base64 = base64.b64encode(buffered.getvalue()).decode()
# Get image dimensions
width, height = image.size
# Prepare lines data
lines = []
for line in baseline_seg.lines:
# Convert boundary points to SVG path
boundary_points = []
for point in line.boundary:
boundary_points.append(f"{point[0]},{point[1]}")
# Convert baseline points to SVG path
baseline_points = []
for point in line.baseline:
baseline_points.append(f"{point[0]},{point[1]}")
# Get text and determine direction
text = line.text if hasattr(line, 'text') else ''
# Check if text contains RTL characters (Hebrew, Arabic, etc.)
rtl_chars = re.compile(r'[\u0591-\u07FF\u200F\u202B\u202E\uFB1D-\uFDFD\uFE70-\uFEFC\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF\uFB50-\uFDFF\uFE70-\uFEFF]')
is_rtl = bool(rtl_chars.search(text))
lines.append({
'boundary': boundary_points,
'baseline': baseline_points,
'text': text,
'confidence': line.confidence if hasattr(line, 'confidence') else None,
'is_rtl': is_rtl
})
# Render template
template = """
{% for line in lines %}
{% endfor %}
{% for line in lines %}
{{ loop.index }}:
{{ line.text }}
{% if line.confidence %}
({{ "%.2f"|format(line.confidence) }})
{% endif %}
{% endfor %}
"""
return Template(template).render(
width=width,
height=height,
image_base64=image_base64,
lines=lines
)
def get_example_images():
"""Get list of example images from the examples directory."""
examples_dir = Path(__file__).parent / "examples"
if not examples_dir.exists():
return []
# Combine both glob patterns into a single list
return [str(f) for f in list(examples_dir.glob("*.jpg")) + list(examples_dir.glob("*.png"))]
def process_and_visualize(image, seg_model_name, rec_model_name, progress=gr.Progress()):
try:
if image is None:
yield "❌ Please upload an image first.", None, None, None, None, None
return
yield "🔄 Starting processing...", None, None, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
progress(0.1, desc="Loading models...")
yield "📦 Loading models...", None, None, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
seg_models, rec_models = load_models()
seg_model = seg_models[seg_model_name]
rec_model = rec_models[rec_model_name]
progress(0.3, desc="Running Segmentation...")
yield "✂️ Running segmentation...", None, None, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
baseline_seg = blla.segment(image, model=seg_model)
progress(0.6, desc="Running Recognition...")
yield "🔠 Running text recognition...", None, None, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
pred_it = rpred.rpred(network=rec_model, im=image, bounds=baseline_seg, pad=16)
records = [record for record in pred_it]
for line, rec_line in zip(baseline_seg.lines, records):
line.prediction = rec_line.prediction
line.text = rec_line.prediction
line.confidences = rec_line.confidences
progress(0.85, desc="Generating PageXML...")
yield "📝 Generating PageXML output...", None, None, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
with tempfile.TemporaryDirectory() as temp_dir:
input_path = os.path.join(temp_dir, "temp.png")
image.save(input_path)
seg_rec_image(input_path, seg_model, rec_model, temp_dir)
output_xml = os.path.join(temp_dir, "temp.xml")
xml_content = open(output_xml, 'r', encoding='utf-8').read() if os.path.exists(output_xml) else "⚠️ Error generating XML output."
progress(1.0, desc="Rendering results...")
yield "✅ Done! Switch to visualization!", render_image(image, baseline_seg), xml_content, gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
except Exception as e:
yield f"❌ Error: {str(e)}", None, None, gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
def main():
# Create necessary directories and templates
SEG_MODELS_DIR.mkdir(parents=True, exist_ok=True)
REC_MODELS_DIR.mkdir(parents=True, exist_ok=True)
ensure_template_exists()
create_templates()
# Load available models
seg_models, rec_models = load_models()
if not seg_models:
print("No segmentation models found in app/models/seg. Please add .mlmodel files.")
return
if not rec_models:
print("No recognition models found in app/models/rec. Please add .mlmodel files.")
return
# Create Gradio interface
with gr.Blocks(title="Kraken OCR on Samaritan manuscripts") as demo:
gr.Markdown("# Kraken OCR on Samaritan manuscripts")
gr.Markdown("Upload an image and select models to process it.")
with gr.Tabs() as tabs:
with gr.Tab("Upload Image") as upload_tab:
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(type="pil", label="Input Image", height=400)
with gr.Row():
seg_model = gr.Dropdown(choices=list(seg_models.keys()), label="Segmentation Model", value=list(seg_models.keys())[0])
rec_model = gr.Dropdown(choices=list(rec_models.keys()), label="Recognition Model", value=list(rec_models.keys())[0])
process_btn = gr.Button("Process Image")
status_box = gr.Markdown("", visible=True)
with gr.Column(scale=1):
gr.Markdown("### Example Images")
examples = gr.Gallery(
get_example_images(),
show_label=False,
interactive=True,
allow_preview=False,
object_fit="cover",
columns=2,
height=400,
elem_classes="example-gallery"
)
with gr.Tab("Visualization", interactive=False) as vis_tab:
visualization_output = gr.HTML(label="Visualization")
with gr.Tab("PageXML", interactive=False) as xml_tab:
xml_output = gr.Textbox(label="PageXML", lines=20, max_lines=50, show_copy_button=True)
# Add custom CSS for the gallery
gr.HTML("""
""")
process_btn.click(
process_and_visualize,
inputs=[image_input, seg_model, rec_model],
outputs=[status_box, visualization_output, xml_output, vis_tab, xml_tab, upload_tab],
show_progress=True
).then(
lambda: gr.Tabs(selected="Visualization"),
outputs=tabs
)
# Example image selection handler
def select_example(evt: gr.SelectData):
if not examples.value:
return None
selected = examples.value[evt.index]
return selected["image"]["path"]
examples.select(
select_example,
None,
image_input
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
main()