import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('bears.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Bear Classifier" description = "A bear classifier trained on internet image dataset with fastai." article="
Thank you
" examples = ['black_bear_example.jpg'] enable_queue=True gr.Interface(fn=predict,inputs=gr.Image(shape=(512, 512)), outputs=gr.Label(num_top_classes=3),title=title, description=description,article=article,examples=examples).launch( enable_queue=enable_queue)