samim2024's picture
Update app.py
fc13a76 verified
import streamlit as st
from streamlit_chat import message
# from langchain.llms import OpenAI #This import has been replaced by the below import please
#from langchain_openai import OpenAI
from langchain_community.llms import HuggingFaceEndpoint
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import (ConversationBufferMemory,
ConversationSummaryMemory,
ConversationBufferWindowMemory
)
if 'conversation' not in st.session_state:
st.session_state['conversation'] =None
if 'messages' not in st.session_state:
st.session_state['messages'] =[]
if 'API_Key' not in st.session_state:
st.session_state['API_Key'] =''
# Setting page title and header
st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:")
st.markdown("<h1 style='text-align: center;'>How can I assist you? </h1>", unsafe_allow_html=True)
st.sidebar.title("😎")
st.session_state['API_Key']= st.sidebar.text_input("What's your API key?",type="password")
summarise_button = st.sidebar.button("Summarise the conversation", key="summarise")
if summarise_button:
summarise_placeholder = st.sidebar.write("Nice chatting with you my friend ❤️:\n\n"+st.session_state['conversation'].memory.buffer)
#summarise_placeholder.write("Nice chatting with you my friend ❤️:\n\n"+st.session_state['conversation'].memory.buffer)
#import os
#os.environ["OPENAI_API_KEY"] = "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"
def getresponse(userInput, api_key):
if st.session_state['conversation'] is None:
llm = HuggingFaceEndpoint(
temperature=0.9,
HUGGINGFACEHUB_API_TOKEN=api_key,
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1" #"mistralai/Mistral-7B-Instruct-v0.2" # 'text-davinci-003' model is depreciated now, so we are using the openai's recommended model
)
st.session_state['conversation'] = ConversationChain(
llm=llm,
verbose=True,
memory=ConversationBufferWindowMemory(llm=llm)
)
response=st.session_state['conversation'].predict(input=userInput)
print(st.session_state['conversation'].memory.buffer)
return response
response_container = st.container()
# Here we will have a container for user input text box
container = st.container()
with container:
with st.form(key='my_form', clear_on_submit=True):
user_input = st.text_area("Your question goes here:", key='input', height=100)
submit_button = st.form_submit_button(label='Send')
if submit_button:
st.session_state['messages'].append(user_input)
model_response=getresponse(user_input,st.session_state['API_Key'])
st.session_state['messages'].append(model_response)
with response_container:
for i in range(len(st.session_state['messages'])):
if (i % 2) == 0:
message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user')
else:
message(st.session_state['messages'][i], key=str(i) + '_AI')