import whisper #from langchain.llms import OpenAI from langchain.agents import initialize_agent from langchain.agents.agent_toolkits import ZapierToolkit from langchain.utilities.zapier import ZapierNLAWrapper import os from langchain.llms import HuggingFaceEndpoint from langchain.llms import huggingface_hub from langchain_community.agent_toolkits import ZapierToolkit from langchain_community.llms import HuggingFaceEndpoint from langchain_community.llms import huggingface_hub # get from https://platform.openai.com/ os.environ["OPENAI_API_KEY"] = "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" # get from https://nla.zapier.com/docs/authentication/ & https://actions.zapier.com/credentials/ after logging in): os.environ["ZAPIER_NLA_API_KEY"] = "sk-ak-7ZkOoOYS9zB0cwl5rARDBWzBYF" def email_summary(file): # large language model llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2") # Initializing zapier zapier = ZapierNLAWrapper() toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier) # The agent used here is a "zero-shot-react-description" agent. # Zero-shot means the agent functions on the current action only — it has no memory. # It uses the ReAct framework to decide which tool to use, based solely on the tool's description. agent = initialize_agent(toolkit.get_tools(), llm, agent="zero-shot-react-description", verbose=True) # specify a model, here its BASE model = whisper.load_model("base") # transcribe audio file result = model.transcribe(file) print(result["text"]) # Send email using zapier agent.run("Send an Email to samim1000@gmail.com via gmail summarizing the following text provided below : "+result["text"])