File size: 10,207 Bytes
20f7a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e00cc6
20f7a0a
9e00cc6
 
 
 
20f7a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e00cc6
 
20f7a0a
9e00cc6
 
 
 
 
 
 
20f7a0a
 
 
 
9e00cc6
 
 
 
 
 
 
20f7a0a
 
 
 
 
 
 
 
 
9e00cc6
20f7a0a
 
 
 
 
9e00cc6
20f7a0a
 
 
9e00cc6
 
20f7a0a
9e00cc6
 
 
 
 
 
 
 
 
 
20f7a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e00cc6
20f7a0a
 
 
 
 
9e00cc6
20f7a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e00cc6
 
20f7a0a
 
 
9e00cc6
20f7a0a
 
 
 
 
 
 
 
9e00cc6
20f7a0a
9e00cc6
 
20f7a0a
 
 
 
 
 
9e00cc6
 
20f7a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625bb7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from typing import List, Dict, Callable, Optional
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import (
    DirectoryLoader,
    UnstructuredMarkdownLoader,
    PyPDFLoader,
    TextLoader
)
import os
import requests
import base64
from PIL import Image
import io

class DocumentLoader:
    """通用文档加载器"""
    def __init__(self, file_path: str, original_filename: str = None):
        self.file_path = file_path
        # 使用传入的原始文件名或者从路径提取的文件名
        self.original_filename = original_filename or os.path.basename(file_path)
        # 从原始文件名中获取扩展名,确保中文文件名也能正确识别文件类型
        self.extension = os.path.splitext(self.original_filename)[1].lower()
        self.api_key = os.getenv("API_KEY")
        self.api_base = os.getenv("BASE_URL")
        
    def process_image(self, image_path: str) -> str:
        """使用 SiliconFlow VLM 模型处理图片"""
        try:
            # 读取图片并转换为base64
            with open(image_path, 'rb') as image_file:
                image_data = image_file.read()
                base64_image = base64.b64encode(image_data).decode('utf-8')
            
            # 调用 SiliconFlow API
            headers = {
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json"
            }
            
            response = requests.post(
                f"{self.api_base}/chat/completions",
                headers=headers,
                json={
                    "model": "Qwen/Qwen2.5-VL-72B-Instruct",
                    "messages": [
                        {
                            "role": "user",
                            "content": [
                                {
                                    "type": "image_url",
                                    "image_url": {
                                        "url": f"data:image/jpeg;base64,{base64_image}",
                                        "detail": "high"
                                    }
                                },
                                {
                                    "type": "text",
                                    "text": "请详细描述这张图片的内容,包括主要对象、场景、活动、颜色、布局等关键信息。"
                                }
                            ]
                        }
                    ],
                    "temperature": 0.7,
                    "max_tokens": 500
                }
            )
            
            if response.status_code != 200:
                raise Exception(f"图片处理API调用失败: {response.text}")
                
            description = response.json()["choices"][0]["message"]["content"]
            return description
            
        except Exception as e:
            print(f"处理图片时出错: {str(e)}")
            return "图片处理失败"
    
    def load(self):
        try:
            print(f"正在加载文件: {self.file_path}, 原始文件名: {self.original_filename}, 扩展名: {self.extension}")
            
            if self.extension == '.md':
                try:
                    loader = UnstructuredMarkdownLoader(self.file_path, encoding='utf-8')
                    return loader.load()
                except UnicodeDecodeError:
                    # 如果UTF-8失败,尝试GBK
                    loader = UnstructuredMarkdownLoader(self.file_path, encoding='gbk')
                    return loader.load()
            elif self.extension == '.pdf':
                loader = PyPDFLoader(self.file_path)
                return loader.load()
            elif self.extension == '.txt':
                try:
                    loader = TextLoader(self.file_path, encoding='utf-8')
                    return loader.load()
                except UnicodeDecodeError:
                    # 如果UTF-8失败,尝试GBK
                    loader = TextLoader(self.file_path, encoding='gbk')
                    return loader.load()
            elif self.extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp']:
                # 处理图片
                description = self.process_image(self.file_path)
                # 创建一个包含图片描述的文档
                from langchain.schema import Document
                doc = Document(
                    page_content=description,
                    metadata={
                        'source': self.file_path,
                        'file_name': self.original_filename,  # 使用原始文件名
                        'img_url': os.path.abspath(self.file_path)  # 存储图片的绝对路径
                    }
                )
                return [doc]
            else:
                print(f"不支持的文件扩展名: {self.extension}")
                raise ValueError(f"不支持的文件格式: {self.extension}")
                
        except UnicodeDecodeError:
            # 如果默认编码处理失败,尝试其他编码
            print(f"文件编码错误,尝试其他编码: {self.file_path}")
            if self.extension in ['.md', '.txt']:
                try:
                    loader = TextLoader(self.file_path, encoding='gbk')
                    return loader.load()
                except Exception as e:
                    print(f"尝试GBK编码也失败: {str(e)}")
            raise
        except Exception as e:
            print(f"加载文件 {self.file_path} 时出错: {str(e)}")
            import traceback
            traceback.print_exc()
            raise

class DocumentProcessor:
    def __init__(self):
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=200,
            length_function=len,
        )
        
    def get_index_name(self, path: str) -> str:
        """根据文件路径生成索引名称"""
        if os.path.isdir(path):
            # 如果是目录,使用目录名
            return f"rag_{os.path.basename(path).lower()}"
        else:
            # 如果是文件,使用文件名(不含扩展名)
            return f"rag_{os.path.splitext(os.path.basename(path))[0].lower()}"
        
    def process(self, path: str, progress_callback: Optional[Callable] = None, original_filename: str = None) -> List[Dict]:
        """

        加载并处理文档,支持目录或单个文件

        参数:

            path: 文档路径

            progress_callback: 进度回调函数,用于报告处理进度

            original_filename: 原始文件名(包括中文)

        返回:处理后的文档列表

        """
        if os.path.isdir(path):
            documents = []
            total_files = sum([len(files) for _, _, files in os.walk(path)])
            processed_files = 0
            processed_size = 0
            
            for root, _, files in os.walk(path):
                for file in files:
                    file_path = os.path.join(root, file)
                    try:
                        # 更新处理进度
                        if progress_callback:
                            file_size = os.path.getsize(file_path)
                            processed_size += file_size
                            processed_files += 1
                            progress_callback(processed_size, f"处理文件 {processed_files}/{total_files}: {file}")
                            
                        # 为目录中的每个文件,传递原始文件名
                        loader = DocumentLoader(file_path, original_filename=file)
                        docs = loader.load()
                        # 添加文件名到metadata
                        for doc in docs:
                            doc.metadata['file_name'] = file  # 使用原始文件名
                        documents.extend(docs)
                    except Exception as e:
                        print(f"警告:加载文件 {file_path} 时出错: {str(e)}")
                        continue
        else:
            try:
                if progress_callback:
                    file_size = os.path.getsize(path)
                    progress_callback(file_size * 0.3, f"加载文件: {original_filename or os.path.basename(path)}")
                    
                # 为单个文件,传递原始文件名
                loader = DocumentLoader(path, original_filename=original_filename)
                documents = loader.load()
                
                # 更新进度
                if progress_callback:
                    progress_callback(file_size * 0.6, f"处理文件内容...")
                    
                # 使用原始文件名而不是存储的文件名
                file_name = original_filename or os.path.basename(path)
                for doc in documents:
                    doc.metadata['file_name'] = file_name
            except Exception as e:
                print(f"加载文件时出错: {str(e)}")
                raise
        
        # 分块
        chunks = self.text_splitter.split_documents(documents)
        
        # 更新进度
        if progress_callback:
            if os.path.isdir(path):
                progress_callback(processed_size, f"文档分块完成,共{len(chunks)}个文档片段")
            else:
                file_size = os.path.getsize(path)
                progress_callback(file_size * 0.9, f"文档分块完成,共{len(chunks)}个文档片段")
        
        # 处理成统一格式
        processed_docs = []
        for i, chunk in enumerate(chunks):
            processed_docs.append({
                'id': f'doc_{i}',
                'content': chunk.page_content,
                'metadata': chunk.metadata
            })
            
        return processed_docs