File size: 6,720 Bytes
20f7a0a 1625bb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
from typing import List, Dict
import requests
import numpy as np
from elasticsearch import Elasticsearch
import urllib3
from dotenv import load_dotenv
import os
load_dotenv()
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
class VectorStore:
def __init__(self):
# ES 8.x 的连接配置
self.es = Elasticsearch(
"https://samlax12-elastic.hf.space",
basic_auth=("elastic", os.getenv("PASSWORD")),
verify_certs=False,
request_timeout=30,
# 忽略系统索引警告
headers={"accept": "application/vnd.elasticsearch+json; compatible-with=8"},
)
self.api_key = os.getenv("API_KEY")
self.api_base = os.getenv("BASE_URL")
def get_embedding(self, text: str) -> List[float]:
"""调用SiliconFlow的embedding API获取向量"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
response = requests.post(
f"{self.api_base}/embeddings",
headers=headers,
json={
"model": "BAAI/bge-m3",
"input": text
}
)
if response.status_code == 200:
return response.json()["data"][0]["embedding"]
else:
raise Exception(f"Error getting embedding: {response.text}")
def store(self, documents: List[Dict], index_name: str) -> None:
"""将文档存储到 Elasticsearch"""
# 创建索引(如果不存在)
if not self.es.indices.exists(index=index_name):
self.create_index(index_name)
# 获取当前索引中的文档数量
try:
response = self.es.count(index=index_name)
last_id = response['count'] - 1 # 文档数量减1作为最后的ID
if last_id < 0:
last_id = -1
except Exception as e:
print(f"获取文档数量时出错,假设为-1: {str(e)}")
last_id = -1
# 批量索引文档
bulk_data = []
for i, doc in enumerate(documents, start=last_id + 1):
# 获取文档向量
vector = self.get_embedding(doc['content'])
# 准备索引数据
bulk_data.append({
"index": {
"_index": index_name,
"_id": f"doc_{i}"
}
})
# 构建文档数据,包含新的img_url字段
doc_data = {
"content": doc['content'],
"vector": vector,
"metadata": {
"file_name": doc['metadata'].get('file_name', '未知文件'),
"source": doc['metadata'].get('source', ''),
"page": doc['metadata'].get('page', ''),
"img_url": doc['metadata'].get('img_url', '') # 添加img_url字段
}
}
bulk_data.append(doc_data)
# 批量写入
if bulk_data:
response = self.es.bulk(operations=bulk_data, refresh=True)
if response.get('errors'):
print("批量写入时出现错误:", response)
def get_files_in_index(self, index_name: str) -> List[str]:
"""获取索引中的所有文件名"""
try:
response = self.es.search(
index=index_name,
body={
"size": 0,
"aggs": {
"unique_files": {
"terms": {
"field": "metadata.file_name",
"size": 1000
}
}
}
}
)
files = [bucket['key'] for bucket in response['aggregations']['unique_files']['buckets']]
return sorted(files)
except Exception as e:
print(f"获取文件列表时出错: {str(e)}")
return []
def create_index(self, index_name: str):
"""创建 Elasticsearch 索引"""
settings = {
"mappings": {
"properties": {
"content": {"type": "text"},
"vector": {
"type": "dense_vector",
"dims": 1024
},
"metadata": {
"properties": {
"file_name": {
"type": "keyword",
"ignore_above": 256
},
"source": {
"type": "keyword"
},
"page": {
"type": "keyword"
},
"img_url": { # 新增图片URL字段
"type": "keyword",
"ignore_above": 2048
}
}
}
}
}
}
# 如果索引已存在,先删除
if self.es.indices.exists(index=index_name):
self.es.indices.delete(index=index_name)
self.es.indices.create(index=index_name, body=settings)
def delete_index(self, index_id: str) -> bool:
"""删除一个索引"""
try:
if self.es.indices.exists(index=index_id):
self.es.indices.delete(index=index_id)
return True
return False
except Exception as e:
print(f"删除索引时出错: {str(e)}")
return False
def delete_document(self, index_id: str, file_name: str) -> bool:
"""根据文件名删除文档"""
try:
response = self.es.delete_by_query(
index=index_id,
body={
"query": {
"term": {
"metadata.file_name": file_name
}
}
},
refresh=True
)
return True
except Exception as e:
print(f"删除文档时出错: {str(e)}")
return False |