agent / modules /knowledge_base /vector_store.py
samlax12's picture
Upload 25 files
20f7a0a verified
raw
history blame
6.72 kB
from typing import List, Dict
import requests
import numpy as np
from elasticsearch import Elasticsearch
import urllib3
from dotenv import load_dotenv
import os
load_dotenv()
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
class VectorStore:
def __init__(self):
# ES 8.x 的连接配置
self.es = Elasticsearch(
"https://samlax12-elastic.hf.space",
basic_auth=("elastic", os.getenv("PASSWORD")),
verify_certs=False,
request_timeout=30,
# 忽略系统索引警告
headers={"accept": "application/vnd.elasticsearch+json; compatible-with=8"},
)
self.api_key = os.getenv("API_KEY")
self.api_base = os.getenv("BASE_URL")
def get_embedding(self, text: str) -> List[float]:
"""调用SiliconFlow的embedding API获取向量"""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
response = requests.post(
f"{self.api_base}/embeddings",
headers=headers,
json={
"model": "BAAI/bge-m3",
"input": text
}
)
if response.status_code == 200:
return response.json()["data"][0]["embedding"]
else:
raise Exception(f"Error getting embedding: {response.text}")
def store(self, documents: List[Dict], index_name: str) -> None:
"""将文档存储到 Elasticsearch"""
# 创建索引(如果不存在)
if not self.es.indices.exists(index=index_name):
self.create_index(index_name)
# 获取当前索引中的文档数量
try:
response = self.es.count(index=index_name)
last_id = response['count'] - 1 # 文档数量减1作为最后的ID
if last_id < 0:
last_id = -1
except Exception as e:
print(f"获取文档数量时出错,假设为-1: {str(e)}")
last_id = -1
# 批量索引文档
bulk_data = []
for i, doc in enumerate(documents, start=last_id + 1):
# 获取文档向量
vector = self.get_embedding(doc['content'])
# 准备索引数据
bulk_data.append({
"index": {
"_index": index_name,
"_id": f"doc_{i}"
}
})
# 构建文档数据,包含新的img_url字段
doc_data = {
"content": doc['content'],
"vector": vector,
"metadata": {
"file_name": doc['metadata'].get('file_name', '未知文件'),
"source": doc['metadata'].get('source', ''),
"page": doc['metadata'].get('page', ''),
"img_url": doc['metadata'].get('img_url', '') # 添加img_url字段
}
}
bulk_data.append(doc_data)
# 批量写入
if bulk_data:
response = self.es.bulk(operations=bulk_data, refresh=True)
if response.get('errors'):
print("批量写入时出现错误:", response)
def get_files_in_index(self, index_name: str) -> List[str]:
"""获取索引中的所有文件名"""
try:
response = self.es.search(
index=index_name,
body={
"size": 0,
"aggs": {
"unique_files": {
"terms": {
"field": "metadata.file_name",
"size": 1000
}
}
}
}
)
files = [bucket['key'] for bucket in response['aggregations']['unique_files']['buckets']]
return sorted(files)
except Exception as e:
print(f"获取文件列表时出错: {str(e)}")
return []
def create_index(self, index_name: str):
"""创建 Elasticsearch 索引"""
settings = {
"mappings": {
"properties": {
"content": {"type": "text"},
"vector": {
"type": "dense_vector",
"dims": 1024
},
"metadata": {
"properties": {
"file_name": {
"type": "keyword",
"ignore_above": 256
},
"source": {
"type": "keyword"
},
"page": {
"type": "keyword"
},
"img_url": { # 新增图片URL字段
"type": "keyword",
"ignore_above": 2048
}
}
}
}
}
}
# 如果索引已存在,先删除
if self.es.indices.exists(index=index_name):
self.es.indices.delete(index=index_name)
self.es.indices.create(index=index_name, body=settings)
def delete_index(self, index_id: str) -> bool:
"""删除一个索引"""
try:
if self.es.indices.exists(index=index_id):
self.es.indices.delete(index=index_id)
return True
return False
except Exception as e:
print(f"删除索引时出错: {str(e)}")
return False
def delete_document(self, index_id: str, file_name: str) -> bool:
"""根据文件名删除文档"""
try:
response = self.es.delete_by_query(
index=index_id,
body={
"query": {
"term": {
"metadata.file_name": file_name
}
}
},
refresh=True
)
return True
except Exception as e:
print(f"删除文档时出错: {str(e)}")
return False