File size: 5,745 Bytes
b8c6d5a
c72c658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6e5dee
 
 
 
 
 
 
 
 
 
 
c72c658
 
 
c6e5dee
 
 
 
 
 
 
 
 
 
 
c72c658
 
 
c6e5dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c72c658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe32371
c72c658
 
 
 
 
865f24e
c72c658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e804c1
 
c72c658
8be21d4
c72c658
 
 
 
 
8be21d4
c72c658
 
653d468
c72c658
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os

from langgraph.graph import StateGraph, START, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition

from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore

from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool

from supabase.client import create_client, Client


# Load environment variables

# ---- Basic Arithmetic Utilities ---- #
@tool
def multiply(a: int, b: int) -> int:
    """Returns the product of two integers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Returns the sum of two integers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Returns the difference between two integers."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Performs division and handles zero division errors."""
    if b == 0:
        raise ValueError("Division by zero is undefined.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Returns the remainder after division."""
    return a % b


# ---- Search Tools ---- #
@tool
def search_wikipedia(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}

@tool
def search_web(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}

@tool
def search_arxiv(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}


system_message = SystemMessage(content="""You are a helpful assistant tasked with answering questions using a set of tools. 
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: 
FINAL ANSWER: [YOUR FINAL ANSWER]. 
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """)

toolset = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    search_wikipedia,
    search_web,
    search_arxiv,
]


# ---- Graph Construction ---- #
def create_agent_flow(provider: str = "groq"):
    """Constructs the LangGraph conversational flow with tool support."""

    if provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        llm = ChatGroq(api_key="secret key" , model="qwen-qwq-32b", temperature=0) 
    elif provider == "huggingface":
        llm = ChatHuggingFace(llm=HuggingFaceEndpoint(
            url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
            temperature=0
        ))
    else:
        raise ValueError("Unsupported provider. Choose from: 'google', 'groq', 'huggingface'.")

    llm_toolchain = llm.bind_tools(toolset)

    # Assistant node behavior
    def assistant_node(state: MessagesState):
        response = llm_toolchain.invoke(state["messages"])
        return {"messages": [response]}

    
    # Build the conversational graph
    graph01 = StateGraph(MessagesState)
    graph01.add_node("assistant", assistant_node)
    graph01.add_node("tools", ToolNode(toolset))
    graph01.add_edge(START, "assistant")
    graph01.add_conditional_edges("assistant", tools_condition)
    graph01.add_edge("tools", "assistant")

    return graph01.compile()


if __name__ == "__main__":
    question = "What is the capital of France?"

    # Build the graph
    compiled_graph = create_agent_flow(provider="groq")

    # Prepare input messages
    messages = [system_message, HumanMessage(content=question)]

    # Run the graph
    output_state = compiled_graph.invoke({"messages": messages})

    # Print the final output
    for m in output_state["messages"]:
        print(m.content)