Spaces:
Sleeping
Sleeping
File size: 5,745 Bytes
b8c6d5a c72c658 c6e5dee c72c658 c6e5dee c72c658 c6e5dee c72c658 fe32371 c72c658 865f24e c72c658 6e804c1 c72c658 8be21d4 c72c658 8be21d4 c72c658 653d468 c72c658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import os
from langgraph.graph import StateGraph, START, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from supabase.client import create_client, Client
# Load environment variables
# ---- Basic Arithmetic Utilities ---- #
@tool
def multiply(a: int, b: int) -> int:
"""Returns the product of two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Returns the sum of two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Returns the difference between two integers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Performs division and handles zero division errors."""
if b == 0:
raise ValueError("Division by zero is undefined.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Returns the remainder after division."""
return a % b
# ---- Search Tools ---- #
@tool
def search_wikipedia(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def search_web(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def search_arxiv(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
system_message = SystemMessage(content="""You are a helpful assistant tasked with answering questions using a set of tools.
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """)
toolset = [
multiply,
add,
subtract,
divide,
modulus,
search_wikipedia,
search_web,
search_arxiv,
]
# ---- Graph Construction ---- #
def create_agent_flow(provider: str = "groq"):
"""Constructs the LangGraph conversational flow with tool support."""
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(api_key="secret key" , model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0
))
else:
raise ValueError("Unsupported provider. Choose from: 'google', 'groq', 'huggingface'.")
llm_toolchain = llm.bind_tools(toolset)
# Assistant node behavior
def assistant_node(state: MessagesState):
response = llm_toolchain.invoke(state["messages"])
return {"messages": [response]}
# Build the conversational graph
graph01 = StateGraph(MessagesState)
graph01.add_node("assistant", assistant_node)
graph01.add_node("tools", ToolNode(toolset))
graph01.add_edge(START, "assistant")
graph01.add_conditional_edges("assistant", tools_condition)
graph01.add_edge("tools", "assistant")
return graph01.compile()
if __name__ == "__main__":
question = "What is the capital of France?"
# Build the graph
compiled_graph = create_agent_flow(provider="groq")
# Prepare input messages
messages = [system_message, HumanMessage(content=question)]
# Run the graph
output_state = compiled_graph.invoke({"messages": messages})
# Print the final output
for m in output_state["messages"]:
print(m.content)
|