import os from langgraph.graph import StateGraph, START, MessagesState from langgraph.prebuilt import ToolNode, tools_condition from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from supabase.client import create_client, Client # Load environment variables # ---- Basic Arithmetic Utilities ---- # @tool def multiply(a: int, b: int) -> int: """Returns the product of two integers.""" return a * b @tool def add(a: int, b: int) -> int: """Returns the sum of two integers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Returns the difference between two integers.""" return a - b @tool def divide(a: int, b: int) -> float: """Performs division and handles zero division errors.""" if b == 0: raise ValueError("Division by zero is undefined.") return a / b @tool def modulus(a: int, b: int) -> int: """Returns the remainder after division.""" return a % b # ---- Search Tools ---- # @tool def search_wikipedia(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results. Args: query: The search query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"wiki_results": formatted_search_docs} @tool def search_web(query: str) -> str: """Search Tavily for a query and return maximum 3 results. Args: query: The search query.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"web_results": formatted_search_docs} @tool def search_arxiv(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return {"arvix_results": formatted_search_docs} system_message = SystemMessage(content="""You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. Your answer should only start with "FINAL ANSWER: ", then follows with the answer. """) toolset = [ multiply, add, subtract, divide, modulus, search_wikipedia, search_web, search_arxiv, ] # ---- Graph Construction ---- # def create_agent_flow(provider: str = "groq"): """Constructs the LangGraph conversational flow with tool support.""" if provider == "google": llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) elif provider == "groq": llm = ChatGroq(api_key="secret key" , model="qwen-qwq-32b", temperature=0) elif provider == "huggingface": llm = ChatHuggingFace(llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", temperature=0 )) else: raise ValueError("Unsupported provider. Choose from: 'google', 'groq', 'huggingface'.") llm_toolchain = llm.bind_tools(toolset) # Assistant node behavior def assistant_node(state: MessagesState): response = llm_toolchain.invoke(state["messages"]) return {"messages": [response]} # Build the conversational graph graph01 = StateGraph(MessagesState) graph01.add_node("assistant", assistant_node) graph01.add_node("tools", ToolNode(toolset)) graph01.add_edge(START, "assistant") graph01.add_conditional_edges("assistant", tools_condition) graph01.add_edge("tools", "assistant") return graph01.compile() if __name__ == "__main__": question = "What is the capital of France?" # Build the graph compiled_graph = create_agent_flow(provider="groq") # Prepare input messages messages = [system_message, HumanMessage(content=question)] # Run the graph output_state = compiled_graph.invoke({"messages": messages}) # Print the final output for m in output_state["messages"]: print(m.content)