Spaces:
Sleeping
Sleeping
application
Browse files- FunctionTools.py +249 -0
- app.py +149 -0
FunctionTools.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import chardet
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from llama_index.core.tools.tool_spec.base import BaseToolSpec
|
| 6 |
+
|
| 7 |
+
class ScriptureDescriptionToolSpec(BaseToolSpec):
|
| 8 |
+
'''
|
| 9 |
+
Purpose: Obtains the description or summary about vedas, mandalas, kandas, shuktas, archakah, adhyaya, and other scriptural elements.
|
| 10 |
+
Returns: A dictionary containing the description or basic information about the specified scriptural element.
|
| 11 |
+
Sample query:
|
| 12 |
+
1. Describe the first kandah, second shukta from Atharvaveda?
|
| 13 |
+
2. Summarize ShuklaYajurVeda?
|
| 14 |
+
3. What is the difference between ShuklaYajurVeda and KrishnaYajurVeda?
|
| 15 |
+
'''
|
| 16 |
+
# Define the functions that we export to the LLM
|
| 17 |
+
spec_functions = ["get_description"]
|
| 18 |
+
|
| 19 |
+
with open("Data/scripture_descriptions.csv", 'rb') as f:
|
| 20 |
+
result = chardet.detect(f.read())
|
| 21 |
+
|
| 22 |
+
encoding = result['encoding']
|
| 23 |
+
df = pd.read_csv("Data/scripture_descriptions.csv", encoding=encoding)
|
| 24 |
+
|
| 25 |
+
@st.cache_data
|
| 26 |
+
def get_description(_self, level_0, level_1:int=None, level_2:int=None, level_3:int=None):
|
| 27 |
+
"""
|
| 28 |
+
To get the description or basic information about vedas/mandalas/kandas/shukatas/archakah/adhyaya and others.
|
| 29 |
+
"""
|
| 30 |
+
try:
|
| 31 |
+
if level_3 is not None:
|
| 32 |
+
# Case with Level-2 specified
|
| 33 |
+
result = _self.df[(_self.df['scripture_name'].str.lower() == level_0.lower())
|
| 34 |
+
& (_self.df['level_1'] == str(level_1))
|
| 35 |
+
& (_self.df['level_2'] == str(level_2)) & (_self.df['level_3'] == str(level_3))]
|
| 36 |
+
elif level_2 is not None:
|
| 37 |
+
# Case with Level-2 specified
|
| 38 |
+
result = _self.df[(_self.df['scripture_name'].str.lower() == level_0.lower())
|
| 39 |
+
& (_self.df['level_1'] == str(level_1)) & (_self.df['level_2'] == str(level_2))]
|
| 40 |
+
elif level_1 is not None:
|
| 41 |
+
# Case with Level-1 specified
|
| 42 |
+
result = _self.df[(_self.df['scripture_name'].str.lower() == level_0.lower())
|
| 43 |
+
& (_self.df['level_1'] == str(level_1))]
|
| 44 |
+
else:
|
| 45 |
+
# Case with only Level-0 specified
|
| 46 |
+
result = _self.df[_self.df['scripture_name'].str.lower() == level_0.lower()]
|
| 47 |
+
|
| 48 |
+
return result.iloc[0].to_dict()
|
| 49 |
+
except IndexError as e:
|
| 50 |
+
return json.dumps({"error": f"Failed to get scripture description. {e}"})
|
| 51 |
+
|
| 52 |
+
class MantraToolSpec(BaseToolSpec):
|
| 53 |
+
'''
|
| 54 |
+
To obtain translations or meaning of vedamantras from RigVeda and AtharvaVeda using the function `get_translation`.
|
| 55 |
+
The mantra details such as vedamantra, padapatha, rishi, chandah, devata, and swarah from the vedas accessible through the function `get_vedamantra_details`.
|
| 56 |
+
The mantra summary like anvaya, adhibautic, ahyatmic, adhidaivic meaning of vedamantra accessible using the function 'get_vedamantra_summary'
|
| 57 |
+
Sample Query:
|
| 58 |
+
1. What is the vedamantra of the mantra from Rigveda, first mandala, first shukta, and first mantra?
|
| 59 |
+
2. What is the devata of the vedamantra from Rigveda, first mandala, first shukta, and first mantra?
|
| 60 |
+
3. What is the meaning of the vedamantra from Rigveda, first mandala, first shukta, and first mantra written by Tulsi Ram?
|
| 61 |
+
4. What is the (adhibautic) meaning of the vedamantra from RigVeda, first mandala, first shukta, and first mantra?
|
| 62 |
+
'''
|
| 63 |
+
spec_functions = ["get_translation", "get_vedamantra_details", "get_vedamantra_summary"]
|
| 64 |
+
|
| 65 |
+
TRANSLATION_CSV_PATH = 'Data/trans_Rig_Ath_index_v2.csv'
|
| 66 |
+
VEDAMANTRA_CSV_PATH = "Data/veda_content_modified_v3.csv"
|
| 67 |
+
|
| 68 |
+
def __init__(self):
|
| 69 |
+
super().__init__()
|
| 70 |
+
self.df_translation = pd.read_csv(self.TRANSLATION_CSV_PATH, encoding='utf-8')
|
| 71 |
+
self.df_vedamantra = pd.read_csv(self.VEDAMANTRA_CSV_PATH, encoding='utf-8')
|
| 72 |
+
|
| 73 |
+
@st.cache_data
|
| 74 |
+
def get_translation(_self, mantraid=None, scripture_name=None, MahatmaName=None, KandahNumber=None,
|
| 75 |
+
MandalaNumber=None, ArchikahNumber=None, ShuktaNumber=None,
|
| 76 |
+
AnvayaNumber=None, PrapatakNumber=None, MantraNumber=None,
|
| 77 |
+
AnuvakNumber=None, AdhyayaNumber=None):
|
| 78 |
+
"""
|
| 79 |
+
Get the translation of mantras from RigVeda and AtharvaVeda.
|
| 80 |
+
Sample Query:
|
| 81 |
+
1. What is the translation of Tulsi Ram of the vedamantra from Rigveda, first mandala, first shukta, and first mantra?
|
| 82 |
+
2. What is the translation or adhibautic meaning of the vedamantra from RigVeda, first mandala, first shukta, and first mantra?
|
| 83 |
+
3. What is the subject of the mantra 1.1.84.1?
|
| 84 |
+
"""
|
| 85 |
+
try:
|
| 86 |
+
if mantraid is None:
|
| 87 |
+
scripture_name_lower = scripture_name.lower() if scripture_name is not None else False
|
| 88 |
+
if scripture_name_lower == 'rigveda':
|
| 89 |
+
details = _self.df_translation[
|
| 90 |
+
(_self.df_translation['scripture_name'].str.lower() == scripture_name_lower)
|
| 91 |
+
& (_self.df_translation['MandalaNumber'] == MandalaNumber)
|
| 92 |
+
& (_self.df_translation['ShuktaNumber'] == int(ShuktaNumber))
|
| 93 |
+
& (_self.df_translation['MantraNumber'] == int(MantraNumber))
|
| 94 |
+
].to_dict(orient='records')
|
| 95 |
+
elif scripture_name_lower == 'atharvaveda':
|
| 96 |
+
details = _self.df_translation[
|
| 97 |
+
(_self.df_translation['scripture_name'].str.lower() == scripture_name_lower)
|
| 98 |
+
& (_self.df_translation['KandahNumber'] == KandahNumber)
|
| 99 |
+
& (_self.df_translation['ShuktaNumber'] == ShuktaNumber)
|
| 100 |
+
& (_self.df_translation['MantraNumber'] == MantraNumber)].to_dict(orient='records')
|
| 101 |
+
elif scripture_name_lower == 'samaveda':
|
| 102 |
+
details = _self.df_translation[
|
| 103 |
+
(_self.df_translation['scripture_name'].str.lower() == scripture_name_lower)
|
| 104 |
+
& (_self.df_translation['ArchikahNumber'] == ArchikahNumber)
|
| 105 |
+
& (_self.df_translation['ShuktaNumber'] == ShuktaNumber)
|
| 106 |
+
& (_self.df_translation['MantraNumber'] == MantraNumber)].to_dict(orient='records')
|
| 107 |
+
elif scripture_name_lower == 'krishnayajurveda':
|
| 108 |
+
details = _self.df_translation[
|
| 109 |
+
(_self.df_translation['scripture_name'].str.lower() == scripture_name_lower)
|
| 110 |
+
& (_self.df_translation['PrapatakNumber'] == PrapatakNumber)
|
| 111 |
+
& (_self.df_translation['AnuvakNumber'] == AnuvakNumber)
|
| 112 |
+
& (_self.df_translation['MantraNumber'] == MantraNumber)].to_dict(orient='records')
|
| 113 |
+
else:
|
| 114 |
+
details = _self.df_translation[
|
| 115 |
+
(_self.df_translation['scripture_name'].str.lower() == scripture_name_lower)
|
| 116 |
+
& (_self.df_translation['AdhyayaNumber'] == AdhyayaNumber)
|
| 117 |
+
& (_self.df_translation['MantraNumber'] == MantraNumber)
|
| 118 |
+
].to_dict(orient='records')
|
| 119 |
+
else:
|
| 120 |
+
details = _self.df_translation[_self.df_translation['mantra_id'] == mantraid].to_dict(orient='records')
|
| 121 |
+
|
| 122 |
+
if MahatmaName is not None:
|
| 123 |
+
for item in details:
|
| 124 |
+
if item['MahatmaName'] == MahatmaName:
|
| 125 |
+
return item
|
| 126 |
+
else:
|
| 127 |
+
return details
|
| 128 |
+
except Exception as e:
|
| 129 |
+
return json.dumps({"error": f"Failed to get translation. {e}"})
|
| 130 |
+
|
| 131 |
+
@st.cache_data
|
| 132 |
+
def get_vedamantra_details(_self, mantraid=None, scripture_name=None, KandahNumber=None,
|
| 133 |
+
MandalaNumber=None, ArchikahNumber=None, ShuktaNumber=None,
|
| 134 |
+
AnvayaNumber=None, PrapatakNumber=None, MantraNumber=None,
|
| 135 |
+
AnuvakNumber=None, AdhyayaNumber=None):
|
| 136 |
+
"""
|
| 137 |
+
To obtain the vedamantra details such as vedamantra, padapata, devata, rishi, swarah, and chandah.
|
| 138 |
+
1. What is the vedamantra of the mantra from Rigveda, first mandala, first shukta, and first mantra?
|
| 139 |
+
2. What is the devata of the vedamantra from Rigveda, first mandala, first shukta, and first mantra?
|
| 140 |
+
"""
|
| 141 |
+
try:
|
| 142 |
+
if mantraid is None:
|
| 143 |
+
scripture_name_lower = scripture_name.lower() if scripture_name is not None else False
|
| 144 |
+
|
| 145 |
+
if scripture_name_lower == 'rigveda':
|
| 146 |
+
conditions = (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower) & \
|
| 147 |
+
(_self.df_vedamantra['MandalaNumber'] == MandalaNumber) & \
|
| 148 |
+
(_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber) & \
|
| 149 |
+
(_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
|
| 150 |
+
details = _self.df_vedamantra[conditions]['mantra_json'].values
|
| 151 |
+
vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]['mandala']['shukta']['mantra']
|
| 152 |
+
|
| 153 |
+
elif scripture_name_lower == 'atharvaveda':
|
| 154 |
+
conditions = (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower) & \
|
| 155 |
+
(_self.df_vedamantra['KandahNumber'] == KandahNumber) & \
|
| 156 |
+
(_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber) & \
|
| 157 |
+
(_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
|
| 158 |
+
details = _self.df_vedamantra[conditions]['mantra_json'].values
|
| 159 |
+
vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]['kandah']['shukta']['mantra']
|
| 160 |
+
elif scripture_name_lower == 'samaveda':
|
| 161 |
+
conditions = (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower) & \
|
| 162 |
+
(_self.df_vedamantra['ArchikahNumber'] == ArchikahNumber) & \
|
| 163 |
+
(_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber) & \
|
| 164 |
+
(_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
|
| 165 |
+
details = _self.df_vedamantra[conditions]['mantra_json'].values
|
| 166 |
+
vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]['archikah']
|
| 167 |
+
elif scripture_name_lower == 'krishnayajurveda':
|
| 168 |
+
conditions = (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower) & \
|
| 169 |
+
(_self.df_vedamantra['PrapatakNumber'] == PrapatakNumber) & \
|
| 170 |
+
(_self.df_vedamantra['AnuvakNumber'] == AnuvakNumber) & \
|
| 171 |
+
(_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
|
| 172 |
+
details = _self.df_vedamantra[conditions]['mantra_json'].values
|
| 173 |
+
vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]['kandah']['prapatak']['anuvak']
|
| 174 |
+
else:
|
| 175 |
+
conditions = (_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower) & \
|
| 176 |
+
(_self.df_vedamantra['AdhyayaNumber'] == AdhyayaNumber) & \
|
| 177 |
+
(_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
|
| 178 |
+
details = _self.df_vedamantra[conditions]['mantra_json'].values
|
| 179 |
+
vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]['adhyaya']['mantra']
|
| 180 |
+
|
| 181 |
+
else:
|
| 182 |
+
# Handle case when mantraid is provided
|
| 183 |
+
details = _self.df_vedamantra[_self.df_vedamantra['mantra_number'] == mantraid]['mantra_json'].values
|
| 184 |
+
vedamantra_details = json.loads(details[0])['mantraHeader']['language'][1]
|
| 185 |
+
|
| 186 |
+
return vedamantra_details
|
| 187 |
+
except Exception as e:
|
| 188 |
+
return json.dumps({"error": f"Failed to get vedamantra details. {str(e)}"})
|
| 189 |
+
|
| 190 |
+
@st.cache_data
|
| 191 |
+
def get_vedamantra_summary(_self, mantraid=None, scripture_name=None, KandahNumber=None,
|
| 192 |
+
MandalaNumber=None, ArchikahNumber=None, ShuktaNumber=None,
|
| 193 |
+
AnvayaNumber=None, PrapatakNumber=None, MantraNumber=None,
|
| 194 |
+
AnuvakNumber=None, AdhyayaNumber=None):
|
| 195 |
+
'''
|
| 196 |
+
To obtain the vedamantra summary like anvaya, translation, adhibautic, adhyatmic, adhidaivic meaning of the mantra.
|
| 197 |
+
1. What is the adhibautic meaning of the mantra from AtharvaVeda, first kandah, first shukta, and first mantra?
|
| 198 |
+
2. What is the anvaya of the vedamantra from Rigveda, first mandala, first shukta, and first mantra?
|
| 199 |
+
'''
|
| 200 |
+
try:
|
| 201 |
+
if mantraid is None:
|
| 202 |
+
scripture_name_lower = scripture_name.lower() if scripture_name is not None else False
|
| 203 |
+
if scripture_name_lower == 'rigveda':
|
| 204 |
+
details = _self.df_vedamantra[
|
| 205 |
+
(_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower)
|
| 206 |
+
& (_self.df_vedamantra['MandalaNumber'] == MandalaNumber)
|
| 207 |
+
& (_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber)
|
| 208 |
+
& (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
|
| 209 |
+
]['mantra_json'].values
|
| 210 |
+
elif scripture_name_lower == 'atharvaveda':
|
| 211 |
+
details = _self.df_vedamantra[
|
| 212 |
+
(_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower)
|
| 213 |
+
& (_self.df_vedamantra['KandahNumber'] == KandahNumber)
|
| 214 |
+
& (_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber)
|
| 215 |
+
& (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
|
| 216 |
+
]['mantra_json'].values
|
| 217 |
+
elif scripture_name_lower == 'samaveda':
|
| 218 |
+
details = _self.df_vedamantra[
|
| 219 |
+
(_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower)
|
| 220 |
+
& (_self.df_vedamantra['ArchikahNumber'] == ArchikahNumber)
|
| 221 |
+
& (_self.df_vedamantra['ShuktaNumber'] == ShuktaNumber)
|
| 222 |
+
& (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
|
| 223 |
+
]['mantra_json'].values
|
| 224 |
+
elif scripture_name_lower == 'krishnayajurveda':
|
| 225 |
+
details = _self.df_vedamantra[
|
| 226 |
+
(_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower)
|
| 227 |
+
& (_self.df_vedamantra['PrapatakNumber'] == PrapatakNumber)
|
| 228 |
+
& (_self.df_vedamantra['AnuvakNumber'] == AnuvakNumber)
|
| 229 |
+
& (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
|
| 230 |
+
]['mantra_json'].values
|
| 231 |
+
else:
|
| 232 |
+
details = _self.df_vedamantra[
|
| 233 |
+
(_self.df_vedamantra['scripture_name'].str.lower() == scripture_name_lower)
|
| 234 |
+
& (_self.df_vedamantra['AdhyayaNumber'] == AdhyayaNumber)
|
| 235 |
+
& (_self.df_vedamantra['MantraNumber'] == str(MantraNumber))
|
| 236 |
+
]['mantra_json'].values
|
| 237 |
+
else:
|
| 238 |
+
details = _self.df_vedamantra[_self.df_vedamantra['mantra_number'] == mantraid]['mantra_json'].values
|
| 239 |
+
|
| 240 |
+
jsonDict = json.loads(details[0])
|
| 241 |
+
mantraSummary = jsonDict['mantraSummary']['language']
|
| 242 |
+
mantraSummary_IAST = jsonDict['mantraSummary']['language'][1]
|
| 243 |
+
vedamantra_summary = {"Roman-IAST summary of vedamantra": mantraSummary_IAST}
|
| 244 |
+
for item in mantraSummary:
|
| 245 |
+
if item['languageName'] == 'English':
|
| 246 |
+
vedamantra_summary.update({"English summary of vedamantra": item})
|
| 247 |
+
return vedamantra_summary
|
| 248 |
+
except Exception as e:
|
| 249 |
+
return json.dumps({"error": f"Failed to get vedamantra summary. {e}"})
|
app.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
st.set_page_config(
|
| 3 |
+
page_title="SVARUPA AI",
|
| 4 |
+
layout="centered", # or "wide"
|
| 5 |
+
initial_sidebar_state="auto" # or "expanded" or "collapsed"
|
| 6 |
+
)
|
| 7 |
+
from llama_index.core import VectorStoreIndex, StorageContext, Document
|
| 8 |
+
from llama_index.llms.openai import OpenAI
|
| 9 |
+
import os
|
| 10 |
+
import pandas as pd
|
| 11 |
+
from llama_index.core import Settings
|
| 12 |
+
from llama_index.vector_stores.pinecone import PineconeVectorStore
|
| 13 |
+
import pinecone
|
| 14 |
+
from pinecone import Pinecone, PodSpec
|
| 15 |
+
from llama_index.core.query_engine import PandasQueryEngine
|
| 16 |
+
from llama_index.core.agent import ReActAgent
|
| 17 |
+
from llama_index.core.memory import ChatMemoryBuffer
|
| 18 |
+
from sentence_transformers import SentenceTransformer
|
| 19 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 20 |
+
#from llama_index.indices.postprocessor import SimilarityPostprocessor
|
| 21 |
+
#from llama_index.postprocessor import SentenceTransformerRerank
|
| 22 |
+
import tiktoken
|
| 23 |
+
from llama_index.core.callbacks import CallbackManager, TokenCountingHandler
|
| 24 |
+
from llama_index.core.tools import QueryEngineTool, ToolMetadata
|
| 25 |
+
from FunctionTools import ScriptureDescriptionToolSpec, MantraToolSpec
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
#load keys
|
| 29 |
+
openai_api_key = st.secrets["OPENAI_APIKEY_CS"]
|
| 30 |
+
pinecone_api_key = st.secrets["PINECONE_API_KEY_SAM"]
|
| 31 |
+
|
| 32 |
+
#llm
|
| 33 |
+
llm_AI4 = OpenAI(temperature=0, model="gpt-4-1106-preview",api_key=openai_api_key, max_tokens=512)
|
| 34 |
+
token_counter = TokenCountingHandler(
|
| 35 |
+
tokenizer=tiktoken.encoding_for_model("gpt-4-1106-preview").encode
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# global settings
|
| 39 |
+
Settings.embed_model = HuggingFaceEmbedding(
|
| 40 |
+
model_name="BAAI/bge-large-en-v1.5",
|
| 41 |
+
embed_batch_size=8
|
| 42 |
+
)
|
| 43 |
+
Settings.llm = llm_AI4
|
| 44 |
+
Settings.chunk_size = 512
|
| 45 |
+
Settings.chunk_overlap = 50
|
| 46 |
+
Settings.callback_manager = CallbackManager([token_counter])
|
| 47 |
+
#memory for bot
|
| 48 |
+
memory = ChatMemoryBuffer.from_defaults(token_limit=3900)
|
| 49 |
+
|
| 50 |
+
#load vector database
|
| 51 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
| 52 |
+
pinecone_index = pc.Index("pod-index")
|
| 53 |
+
vector_store_pine = PineconeVectorStore(pinecone_index=pinecone_index)
|
| 54 |
+
storage_context_pine = StorageContext.from_defaults(vector_store=vector_store_pine)
|
| 55 |
+
index_store = VectorStoreIndex.from_vector_store(vector_store_pine,storage_context=storage_context_pine)
|
| 56 |
+
query_engine_vector = index_store.as_query_engine(similarity_top_k=5,vector_store_query_mode ='hybrid',alpha=0.6)
|
| 57 |
+
#pandas Engine
|
| 58 |
+
df_veda_details = pd.read_csv("Data/veda_content_details.csv",encoding='utf-8')
|
| 59 |
+
query_engine_pandas = PandasQueryEngine(df=df_veda_details)
|
| 60 |
+
|
| 61 |
+
# Query Engine Tools
|
| 62 |
+
query_engine_tools = [
|
| 63 |
+
QueryEngineTool(
|
| 64 |
+
query_engine=query_engine_vector,
|
| 65 |
+
metadata=ToolMetadata(
|
| 66 |
+
name="vector_engine",
|
| 67 |
+
description=(
|
| 68 |
+
'''Helpful to get semantic information from the documents. These documents containing comprehensive information about the Vedas.\
|
| 69 |
+
They also covers various aspects, including general details about the Vedas, fundamental terminology associated with Vedic literature, \
|
| 70 |
+
and detailed information about Vedamantras for each Veda. The Vedamantra details encompass essential elements such as padapatha, rishi, chandah,\
|
| 71 |
+
devata, and swarah.This tool is very useful to answer general questions related to vedas.\
|
| 72 |
+
Sample Query:\
|
| 73 |
+
1. What is the meaning of devata ?\
|
| 74 |
+
2. What are the different Brahmanas associated with SamaVeda?\
|
| 75 |
+
3. What is the difference between Shruti and Smriti.
|
| 76 |
+
'''
|
| 77 |
+
),
|
| 78 |
+
),
|
| 79 |
+
),
|
| 80 |
+
QueryEngineTool(
|
| 81 |
+
query_engine=query_engine_pandas,
|
| 82 |
+
metadata=ToolMetadata(
|
| 83 |
+
name="pandas_engine",
|
| 84 |
+
description=(
|
| 85 |
+
'''Helpful to answer the queries related to count from the documents. This document is a .csv file with different columns containing comprehensive information about the Vedas.\
|
| 86 |
+
The column names as follows:\
|
| 87 |
+
'mantra_id', 'scripture_name', 'KandahNumber', 'PrapatakNumber','AnuvakNumber', 'MantraNumber', 'DevataName', 'RishiName', 'SwarahName', 'ChandaName',\
|
| 88 |
+
'padapatha', 'vedamantra', 'AdhyayaNumber', 'ArchikahNumber', 'ArchikahName', 'ShuktaNumber', 'keyShukta', 'ParyayaNumber', 'MandalaNumber'
|
| 89 |
+
''This tool is very useful to answer questions related to vedas on.\
|
| 90 |
+
Sample Query:\
|
| 91 |
+
1. How many mantras are there in RigVeda whose swarah is gāndhāraḥ?\
|
| 92 |
+
2. How many different devata present in rigveda?\
|
| 93 |
+
3. Which Kandah has the maximum number of in KrishnaYajurVeda?
|
| 94 |
+
4. How many mantras are there in RigVeda?
|
| 95 |
+
'''
|
| 96 |
+
),
|
| 97 |
+
),
|
| 98 |
+
)
|
| 99 |
+
]
|
| 100 |
+
|
| 101 |
+
# tools
|
| 102 |
+
mantra_tools = MantraToolSpec().to_tool_list()
|
| 103 |
+
description_tools = ScriptureDescriptionToolSpec().to_tool_list()
|
| 104 |
+
tools = [*mantra_tools,*description_tools,*query_engine_tools]
|
| 105 |
+
|
| 106 |
+
# context
|
| 107 |
+
context = """
|
| 108 |
+
You are an expert on Vedas and related scriptures.\
|
| 109 |
+
Your role is to respond to questions about vedic scriptures and associated information based on available sources.\
|
| 110 |
+
For every query, you must use either any one of the tool or use available history/context.
|
| 111 |
+
Please provide well-informed answers. Don't use prior knowledge.
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
# Function to create ReActAgent instance (change it based on your initialization logic)
|
| 115 |
+
@st.cache_resource(show_spinner=False) # Set allow_output_mutation to True for mutable objects like instances
|
| 116 |
+
def create_react_agent():
|
| 117 |
+
return ReActAgent.from_tools(tools, llm=llm_AI4, context=context, verbose=True)
|
| 118 |
+
|
| 119 |
+
# Example usage
|
| 120 |
+
react_agent_instance = create_react_agent()
|
| 121 |
+
|
| 122 |
+
# Streamlit Components Initialization
|
| 123 |
+
st.title("Svarupa Bot ")
|
| 124 |
+
|
| 125 |
+
if "messages" not in st.session_state.keys():
|
| 126 |
+
st.session_state.messages = [
|
| 127 |
+
{"role": "assistant", "content": "Hi. I am Svarupa AI Assistant. Ask me a question about Vedas!"}
|
| 128 |
+
]
|
| 129 |
+
|
| 130 |
+
if "chat_engine" not in st.session_state.keys():
|
| 131 |
+
# Using st.cache_resource for caching the unserializable react_agent
|
| 132 |
+
st.session_state.chat_engine = create_react_agent()
|
| 133 |
+
|
| 134 |
+
if prompt := st.chat_input("Your question"):
|
| 135 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 136 |
+
|
| 137 |
+
for message in st.session_state.messages:
|
| 138 |
+
with st.chat_message(message["role"]):
|
| 139 |
+
st.write(message["content"])
|
| 140 |
+
|
| 141 |
+
if st.session_state.messages[-1]["role"] != "assistant":
|
| 142 |
+
with st.chat_message("assistant"):
|
| 143 |
+
with st.spinner("Thinking..."):
|
| 144 |
+
# Using the cached chat_engine
|
| 145 |
+
response = st.session_state.chat_engine.chat(prompt)
|
| 146 |
+
st.write(response.response)
|
| 147 |
+
message = {"role": "assistant", "content": response.response}
|
| 148 |
+
st.session_state.messages.append(message)
|
| 149 |
+
|