Spaces:
Sleeping
Sleeping
File size: 14,926 Bytes
d445f2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import os
import gradio as gr
import logging
import uuid
import pathlib
from dotenv import load_dotenv
from research_engine import ResearchEngine
import time
import traceback
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Initialize the research engine with verbose=False for production
research_engine = None
# Dict to store session-specific research engines
session_engines = {}
def validate_api_keys(custom_openai_key=None):
"""Checks if required API keys are set"""
missing_keys = []
if not os.getenv("BRAVE_API_KEY"):
missing_keys.append("BRAVE_API_KEY")
# Check for OpenAI key in either the environment or the custom key provided
if not custom_openai_key and not os.getenv("OPENAI_API_KEY"):
missing_keys.append("OPENAI_API_KEY")
return missing_keys
def get_engine_for_session(session_id, openai_api_key=None):
"""Get or create a research engine for the specific session with optional custom API key"""
if session_id not in session_engines:
logger.info(f"Creating new research engine for session {session_id}")
# Set temporary API key if provided by user
original_key = None
if openai_api_key:
logger.info("Using custom OpenAI API key provided by user")
original_key = os.environ.get("OPENAI_API_KEY")
os.environ["OPENAI_API_KEY"] = openai_api_key
try:
session_engines[session_id] = ResearchEngine(verbose=False)
finally:
# Restore original key if we changed it
if original_key is not None:
os.environ["OPENAI_API_KEY"] = original_key
elif openai_api_key:
# If there was no original key, remove the temporary one
os.environ.pop("OPENAI_API_KEY", None)
return session_engines[session_id]
def cleanup_session(session_id):
"""Remove a session when it's no longer needed"""
if session_id in session_engines:
logger.info(f"Cleaning up session {session_id}")
del session_engines[session_id]
def process_message(message, history, session_id, openai_api_key=None):
"""
Process user message and update chat history.
Args:
message: User's message
history: Chat history list
session_id: Unique identifier for the session
openai_api_key: Optional custom OpenAI API key
Returns:
Updated history
"""
# Validate API keys
missing_keys = validate_api_keys(openai_api_key)
if missing_keys:
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": f"Error: Missing required API keys: {', '.join(missing_keys)}. Please set these in your .env file or input your OpenAI API key below."}
]
# Add user message to history
history.append({"role": "user", "content": message})
try:
print(f"Starting research for: {message}")
start_time = time.time()
# Get the appropriate engine for this session, passing the API key if provided
engine = get_engine_for_session(session_id, openai_api_key)
# Set the API key for this specific request if provided
original_key = None
if openai_api_key:
original_key = os.environ.get("OPENAI_API_KEY")
os.environ["OPENAI_API_KEY"] = openai_api_key
try:
# Start the research process
research_task = engine.research(message)
finally:
# Restore original key if we changed it
if original_key is not None:
os.environ["OPENAI_API_KEY"] = original_key
elif openai_api_key:
# If there was no original key, remove the temporary one
os.environ.pop("OPENAI_API_KEY", None)
# Print the research task output for debugging
print(f"Research task result type: {type(research_task)}")
print(f"Research task content: {research_task}")
# If we get here, step 1 is complete
history[-1] = {"role": "user", "content": message}
history.append({"role": "assistant", "content": f"Researching... this may take a minute or two...\n\n**Step 1/4:** Refining your query..."})
yield history
# We don't actually have real-time progress indication from the engine,
# so we'll simulate it with a slight delay between steps
time.sleep(1)
history[-1] = {"role": "assistant", "content": f"Researching... this may take a minute or two...\n\n**Step 1/4:** Refining your query... β\n**Step 2/4:** Searching the web..."}
yield history
time.sleep(1)
history[-1] = {"role": "assistant", "content": f"Researching... this may take a minute or two...\n\n**Step 1/4:** Refining your query... β\n**Step 2/4:** Searching the web... β\n**Step 3/4:** Analyzing results..."}
yield history
time.sleep(1)
history[-1] = {"role": "assistant", "content": f"Researching... this may take a minute or two...\n\n**Step 1/4:** Refining your query... β\n**Step 2/4:** Searching the web... β\n**Step 3/4:** Analyzing results... β\n**Step 4/4:** Synthesizing information..."}
yield history
# Get response from research engine
response = research_task["result"]
end_time = time.time()
processing_time = end_time - start_time
# Add processing time for transparency
response += f"\n\nResearch completed in {processing_time:.2f} seconds."
# Update last message with the full response
history[-1] = {"role": "assistant", "content": response}
yield history
except Exception as e:
logger.exception("Error processing message")
error_traceback = traceback.format_exc()
error_message = f"An error occurred: {str(e)}\n\nTraceback: {error_traceback}"
history[-1] = {"role": "assistant", "content": error_message}
yield history
# Define a basic theme with minimal customization - more styling in CSS
custom_theme = gr.themes.Soft(
primary_hue=gr.themes.colors.indigo,
secondary_hue=gr.themes.colors.blue,
neutral_hue=gr.themes.colors.slate,
)
# Gradio versions have different ways of loading CSS, let's ensure compatibility
css_file_path = pathlib.Path("assets/custom.css")
if css_file_path.exists():
with open(css_file_path, 'r') as f:
css_content = f.read()
else:
css_content = "" # Fallback empty CSS if file doesn't exist
# Add the CSS as a style tag to ensure it works in all Gradio versions
css_head = f"""
<style>
{css_content}
/* Additional styling for API key input */
.api-settings .api-key-input input {{
border: 1px solid #ccc;
border-radius: 8px;
font-family: monospace;
letter-spacing: 1px;
}}
.api-settings .api-key-info {{
font-size: 0.8rem;
color: #666;
margin-top: 5px;
}}
.api-settings {{
margin-bottom: 20px;
border: 1px solid #eee;
border-radius: 8px;
padding: 10px;
background-color: #f9f9f9;
}}
</style>
"""
# Create the Gradio interface with multiple CSS loading methods for compatibility
with gr.Blocks(
title="Web Research Agent",
theme=custom_theme,
css=css_content,
head=css_head, # Older versions may use this
) as app:
# Create a unique session ID for each user
session_id = gr.State(lambda: str(uuid.uuid4()))
with gr.Row(elem_classes=["container"]):
with gr.Column():
with gr.Row(elem_classes=["app-header"]):
gr.Markdown("""
<div style="display: flex; align-items: center; justify-content: center;">
<div style="width: 40px; height: 40px; margin-right: 15px; background: linear-gradient(135deg, #3a7bd5, #00d2ff); border-radius: 10px; display: flex; justify-content: center; align-items: center;">
<span style="color: white; font-size: 24px; font-weight: bold;">R</span>
</div>
<h1 style="margin: 0;">Web Research Agent</h1>
</div>
""")
gr.Markdown("""
This intelligent agent utilizes a multi-step process to deliver comprehensive research on any topic.
Simply enter your question or topic below to get comprehensive, accurate information with proper citations.
""", elem_classes=["md-container"])
# Missing keys warning
missing_keys = validate_api_keys()
if missing_keys:
gr.Markdown(f"β οΈ **Warning:** Missing required API keys: {', '.join(missing_keys)}. Add these to your .env file.", elem_classes=["warning"])
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
avatar_images=(None, "./assets/assistant_avatar.png"),
type="messages", # Use the modern messages format instead of tuples
elem_classes=["chatbot-container"]
)
# API Key input
with gr.Accordion("API Settings", open=False, elem_classes=["api-settings"]):
openai_api_key = gr.Textbox(
label="OpenAI API Key (optional)",
placeholder="sk-...",
type="password",
info="Provide your own OpenAI API key if you don't want to use the system default key.",
elem_classes=["api-key-input"]
)
gr.Markdown("""
Your API key is only used for your requests and is never stored on our servers.
It's a safer alternative to adding it to the .env file.
[Get an API key from OpenAI](https://platform.openai.com/account/api-keys)
""", elem_classes=["api-key-info"])
with gr.Row(elem_classes=["input-container"]):
msg = gr.Textbox(
placeholder="Ask me anything...",
scale=9,
container=False,
show_label=False,
elem_classes=["input-box"]
)
submit = gr.Button("Search", scale=1, variant="primary", elem_classes=["search-button"], value="search")
# Clear button
clear = gr.Button("Clear Conversation", elem_classes=["clear-button"])
# Examples
with gr.Accordion("Example Questions", open=False, elem_classes=["examples-container"]):
examples = gr.Examples(
examples=[
"What are the latest advancements in artificial intelligence?",
"Explain the impact of climate change on marine ecosystems",
"How do mRNA vaccines work?",
"What are the health benefits of intermittent fasting?",
"Explain the current state of quantum computing research",
"What are the main theories about dark matter?",
"How is blockchain technology being used outside of cryptocurrency?",
],
inputs=msg
)
# Set up event handlers
submit_click_event = submit.click(
process_message,
inputs=[msg, chatbot, session_id, openai_api_key],
outputs=[chatbot],
show_progress=True
)
msg_submit_event = msg.submit(
process_message,
inputs=[msg, chatbot, session_id, openai_api_key],
outputs=[chatbot],
show_progress=True
)
# Clear message input after sending
submit_click_event.then(lambda: "", None, msg)
msg_submit_event.then(lambda: "", None, msg)
# Clear conversation and reset session
def clear_conversation_and_session(session_id_value):
# Clear the session data
cleanup_session(session_id_value)
# Generate a new session ID
new_session_id = str(uuid.uuid4())
# Return empty history and new session ID
return [], new_session_id
clear.click(
clear_conversation_and_session,
inputs=[session_id],
outputs=[chatbot, session_id]
)
# Citation and tools information
with gr.Accordion("About This Research Agent", open=False, elem_classes=["footer"]):
gr.Markdown("""
### Research Agent Features
This research agent uses a combination of specialized AI agents to provide comprehensive answers:
- **Researcher Agent**: Refines queries and searches the web
- **Analyst Agent**: Evaluates content relevance and factual accuracy
- **Writer Agent**: Synthesizes information into coherent responses
#### Tools Used
- BraveSearch and Tavily for web searching
- Content scraping for in-depth information
- Analysis for relevance and factual verification
#### API Keys
- You can use your own OpenAI API key by entering it in the "API Settings" section
- Your API key is used only for your requests and is never stored on our servers
- This lets you control costs and use your preferred API tier
All information is provided with proper citations and sources.
*Processing may take a minute or two as the agent searches, analyzes, and synthesizes information.*
""", elem_classes=["md-container"])
if __name__ == "__main__":
# Create assets directory if it doesn't exist
os.makedirs("assets", exist_ok=True)
# Launch the Gradio app
app.launch() |