File size: 31,448 Bytes
27818c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
import streamlit as st
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
from streamlit_extras.badges import badge
import numpy as np
import pathlib
import streamlit.components.v1 as components

# Set page configuration
st.set_page_config(
    page_title="Tech4Humans Projects | CV Journey",
    page_icon="πŸ’Ό",
    layout="wide",
    initial_sidebar_state="expanded",
)

# Title and introduction
st.header("πŸ’Ό Tech4Humans - Industry Applications of CV")

st.markdown(
    """
### Professional Experience in Machine Learning Engineering

I joined Tech4Humans initially as an ML Engineering intern in mid-2024 and was later hired as a full-time 
Machine Learning Engineer. My work focuses on customizing and creating AI models for real-world applications,
with a strong emphasis on computer vision solutions.

This section showcases two significant CV projects I've worked on at Tech4Humans:
"""
)

# Project tabs
projects_tab = st.tabs(["Signature Detection", "Document Information Extraction"])

# Signature Detection Project
with projects_tab[0]:
    st.subheader("Open-Source Signature Detection Model")

    col1, col2 = st.columns([1, 1])

    with col1:
        html_content = """
<div style="
    display: flex; 
    gap: 24px; 
    margin: 2em 0; 
    line-height: 1.6;
">

  <!-- Left Column - Text -->
  <div style="flex: 1; padding-right: 16px;">
    <p style="font-size: 1.1rem; margin-bottom: 1em;">
      This article presents an <strong>open-source project</strong> for automated signature detection in document processing, structured into four key phases:
    </p>
    <ul style="padding-left: 20px; margin-bottom: 1em; font-size: 1rem;">
      <li><strong>Dataset Engineering:</strong> Curation of a hybrid dataset through aggregation of two public collections.</li>
      <li><strong>Architecture Benchmarking:</strong> Systematic evaluation of state-of-the-art object detection architectures (<em>YOLO series, DETR variants, and YOLOS</em>), focusing on accuracy, computational efficiency, and deployment constraints.</li>
      <li><strong>Model Optimization:</strong> Leveraged Optuna for hyperparameter tuning, yielding a 7.94% F1-score improvement over baseline configurations.</li>
      <li><strong>Production Deployment:</strong> Utilized Triton Inference Server for OpenVINO CPU-optimized inference.</li>
    </ul>
    <p style="font-size: 1.1rem; margin-top: 1em;">
      Experimental results demonstrate a robust balance between precision, recall, and inference speed, validating the solution's practicality for real-world applications.  
    </p>
  </div>

  <!-- Right Column - Images -->
  <div style="
      flex: 1; 
      display: flex; 
      flex-direction: column; 
      gap: 12px;
  ">
    <img src="https://cdn-uploads.huggingface.co/production/uploads/666b9ef5e6c60b6fc4156675/6AnC1ut7EOLa6EjibXZXY.webp" 
         style="max-width: 100%; height: auto; border-radius: 8px; box-shadow: 0 4px 8px rgba(0,0,0,0.1);">
    <div style="display: flex; gap: 12px;">
      <img src="https://cdn-uploads.huggingface.co/production/uploads/666b9ef5e6c60b6fc4156675/jWxcAUZPt8Bzup8kL-bor.webp" 
           style="flex: 1; max-width: 50%; height: auto; border-radius: 8px; box-shadow: 0 4px 8px rgba(0,0,0,0.1);">
      <img src="https://cdn-uploads.huggingface.co/production/uploads/666b9ef5e6c60b6fc4156675/tzK0lJz7mI2fazpY9pB1w.webp" 
           style="flex: 1; max-width: 50%; height: auto; border-radius: 8px; box-shadow: 0 4px 8px rgba(0,0,0,0.1);">
    </div>
  </div>

</div>
        """
        st.html(html_content)

    # Dataset section
    st.markdown("---")
    st.markdown("### Dataset Engineering")

    col1, col2 = st.columns([2, 1])

    with col1:
        st.markdown(
            """
        #### Dataset Composition & Preprocessing
        
        The dataset was constructed by merging two publicly available benchmarks:
        
        - **[Tobacco800](https://paperswithcode.com/dataset/tobacco-800):** Scanned documents with signature annotations.
        - **[Signatures-XC8UP](https://universe.roboflow.com/roboflow-100/signatures-xc8up):** Part of the Roboflow 100 benchmark with handwritten signature images.
        
        **Preprocessing & Augmentation (using [Roboflow](https://roboflow.com/)):**
        - **Split:** Training (70%), Validation (15%), Test (15%) from 2,819 total images.
        - **Preprocessing:** Auto-orientation, resize to 640x640px.
        - **Augmentation:** Rotation, shear, brightness/exposure changes, blur, noise to enhance model robustness.
        
        The final dataset combines diverse document types and signature styles.
        """
        )

    with col2:
        st.image(
            "https://cdn-uploads.huggingface.co/production/uploads/666b9ef5e6c60b6fc4156675/_o4PZzTyj17qhUYMLM2Yn.png",
            caption="Figure 10: Annotated document samples (Source: Signature Detection Article)",
            use_container_width=True,
        )
        st.caption(
            "The dataset includes various document types with annotated signatures and logos."
        )

    # Architecture evaluation
    st.markdown("---")
    st.markdown("### Architecture Evaluation")

    st.markdown(
        """
    We systematically evaluated multiple state-of-the-art object detection architectures (YOLO series, DETR variants, YOLOS) 
    to find the optimal balance between accuracy (mAP), inference speed (CPU ONNX), and training time. 
    The results below are based on training for 35 epochs.
    """
    )

    # Actual model performance comparison data from Article Table 3
    model_data = {
        "Model": [
            "rtdetr-l",
            "yolos-base",
            "yolos-tiny",
            "conditional-detr",
            "detr",
            "yolov8x",
            "yolov8l",
            "yolov8m",
            "yolov8s",
            "yolov8n",
            "yolo11x",
            "yolo11l",
            "yolo11m",
            "yolo11s",
            "yolo11n",
            "yolov10x",
            "yolov10l",
            "yolov10b",
            "yolov10m",
            "yolov10s",
            "yolov10n",
            "yolo12n",
            "yolo12s",
            "yolo12m",
            "yolo12l",
            "yolo12x",
        ],
        "mAP@50 (%)": [
            92.71,
            90.12,
            86.98,
            93.65,
            88.89,
            79.42,
            80.03,
            87.53,
            87.47,
            81.61,
            66.71,
            70.74,
            80.96,
            83.56,
            81.38,
            68.10,
            72.68,
            78.98,
            78.77,
            66.39,
            73.43,
            75.86,
            66.66,
            61.96,
            54.92,
            51.16,
        ],
        "Inference Time (ms)": [
            583.6,
            1706.5,
            265.3,
            476.8,
            425.6,
            1259.5,
            871.3,
            401.2,
            216.6,
            110.4,
            1016.7,
            518.1,
            381.7,
            179.8,
            106.7,
            821.2,
            580.8,
            473.1,
            320.1,
            150.1,
            73.9,
            90.4,
            166.6,
            372.8,
            505.7,
            1022.8,
        ],
        "mAP@50-95 (%)": [  # Added for hover data
            62.24,
            58.36,
            46.91,
            65.33,
            57.94,
            55.29,
            59.40,
            66.55,
            65.46,
            62.40,
            48.23,
            49.91,
            60.08,
            63.88,
            61.75,
            47.45,
            52.27,
            57.89,
            58.13,
            47.39,
            55.27,
            55.87,
            48.54,
            45.62,
            41.00,
            35.42,
        ],
    }

    model_df = pd.DataFrame(model_data)
    model_df = model_df.sort_values(
        "Inference Time (ms)"
    )  # Sort for better visualization

    # Create a scatter plot for model comparison (based on Article Figure 11)
    fig = px.scatter(
        model_df,
        x="Inference Time (ms)",
        y="mAP@50 (%)",
        color="Model",  # Color by model
        hover_name="Model",
        hover_data=["mAP@50-95 (%)"],  # Show mAP50-95 on hover
        text="Model",  # Display model names on points (optional, can be cluttered)
        title="Model Architecture Comparison (CPU ONNX Inference)",
    )

    fig.update_traces(textposition="top center")  # Adjust text position if displayed
    fig.update_layout(
        xaxis_title="Inference Time (ms) - lower is better",
        yaxis_title="mAP@50 (%) - higher is better",
        height=600,  # Increased height for clarity
        margin=dict(l=20, r=20, t=50, b=20),
        legend_title_text="Model Variant",
    )
    # Optional: Add annotations for key models if needed
    # fig.add_annotation(x=216.6, y=87.47, text="YOLOv8s", showarrow=True, arrowhead=1)
    # fig.add_annotation(x=73.9, y=73.43, text="YOLOv10n (Fastest)", showarrow=True, arrowhead=1)
    # fig.add_annotation(x=476.8, y=93.65, text="Conditional DETR (Highest mAP@50)", showarrow=True, arrowhead=1)

    st.plotly_chart(fig, use_container_width=True)

    st.markdown(
        """
    **Model Selection:**

    While `conditional-detr-resnet-50` achieved the highest mAP@50 (93.65%), and `yolov10n` had the lowest CPU inference time (73.9 ms), **YOLOv8s** was selected for further optimization. 
    
    **Rationale for YOLOv8s:**
    - **Strong Balance:** Offered a competitive mAP@50 (87.47%) and mAP@50-95 (65.46%) with a reasonable inference time (216.6 ms).
    - **Efficiency:** Convolutional architectures like YOLO generally showed faster inference and training times compared to transformer models in this experiment.
    - **Export & Ecosystem:** Excellent support for various export formats (ONNX, OpenVINO, TensorRT) facilitated by the Ultralytics library, simplifying deployment.
    - **Community & Development:** Active development and large community support.
    """
    )

    # Hyperparameter tuning
    st.markdown("---")
    st.markdown("### Hyperparameter Optimization")

    col1, col2 = st.columns([2, 1])  # Keep ratio

    with col1:
        st.markdown(
            """
        Using **Optuna**, we performed hyperparameter tuning on the selected **YOLOv8s** model over 20 trials, optimizing for the F1-score on the test set.
        
        **Key Parameters Explored:**
        - `dropout`: (0.0 to 0.5)
        - `lr0` (Initial Learning Rate): (1e-5 to 1e-1, log scale)
        - `box` (Box Loss Weight): (3.0 to 7.0)
        - `cls` (Class Loss Weight): (0.5 to 1.5)
        - `optimizer`: (AdamW, RMSProp)
        
        **Optimization Objective:**
        Maximize F1-score, balancing precision and recall, crucial for signature detection where both false positives and false negatives are problematic.
        
        **Results:**
        The best trial (#10) significantly improved performance compared to the baseline YOLOv8s configuration, notably increasing Recall.
        """
        )

    with col2:
        # Data from Article Table 4
        hp_results = {
            "Model": ["YOLOv8s (Base)", "YOLOv8s (Tuned)"],
            "F1-score (%)": [85.42, 93.36],
            "Precision (%)": [97.23, 95.61],
            "Recall (%)": [76.16, 91.21],
            "mAP@50 (%)": [87.47, 95.75],
            "mAP@50-95 (%)": [65.46, 66.26],
        }
        hp_df = pd.DataFrame(hp_results)

        # Create bar chart comparing F1 scores
        fig_hp = px.bar(
            hp_df,
            x="Model",
            y="F1-score (%)",
            color="Model",
            title="F1-Score Improvement After HPO",
            text="F1-score (%)",
            color_discrete_sequence=px.colors.qualitative.Pastel,
            labels={"F1-score (%)": "F1-Score (%)"},
            hover_data=["Precision (%)", "Recall (%)", "mAP@50 (%)", "mAP@50-95 (%)"],
        )
        fig_hp.update_traces(texttemplate="%{text:.2f}%", textposition="outside")
        fig_hp.update_layout(
            yaxis_range=[0, 100],  # Set y-axis from 0 to 100
            height=400,  # Adjusted height
            margin=dict(l=20, r=20, t=40, b=20),
            showlegend=False,
        )
        st.plotly_chart(fig_hp, use_container_width=True)
        st.markdown(
            f"The tuning resulted in a **{hp_df.loc[1, 'F1-score (%)'] - hp_df.loc[0, 'F1-score (%)']:.2f}% absolute improvement** in F1-score."
        )

    # Production deployment
    st.markdown("---")
    st.markdown("### Production Deployment")

    st.markdown(
        """
    The final, optimized YOLOv8s model was deployed using a production-ready inference pipeline designed for efficiency and scalability.
    
    **Key Components:**
    - **Model Format:** Exported to **ONNX** for broad compatibility and optimized CPU inference with **OpenVINO**. TensorRT format also available for GPU inference.
    - **Inference Server:** **Triton Inference Server** used for serving the model, chosen for its flexibility and performance.
    - **Deployment:** Containerized using **Docker** for reproducible environments. A custom Docker image including only necessary backends (Python, ONNX, OpenVINO) was built to reduce size.
    - **Ensemble Model:** A Triton Ensemble Model integrates preprocessing (Python), inference (ONNX/OpenVINO), and postprocessing (Python, including NMS) into a single server-side pipeline, minimizing latency.
    
    **Final Performance Metrics (Test Set):**
    - **Precision:** 94.74%
    - **Recall:** 89.72%
    - **F1-score:** 93.36% (derived from Precision/Recall or Table 4)
    - **mAP@50:** 94.50%
    - **mAP@50-95:** 67.35%
    - **Inference Latency:** 
        - CPU (ONNX Runtime): **~171.6 ms**
        - GPU (TensorRT on T4): **~7.7 ms** 
    """
    )

    # Architecture diagram
    st.markdown("### Deployment Architecture (Triton Ensemble)")

    # Mermaid diagram for the Ensemble Model (based on Article Figure 14)
    mermaid_code = """
    flowchart TB
    subgraph "Triton Inference Server"
        direction TB
        subgraph "Ensemble Model Pipeline"
            direction TB
            subgraph Input
                raw["raw_image
                 (UINT8, [-1])"]
                conf["confidence_threshold
                 (FP16, [1])"]
                iou["iou_threshold
                 (FP16, [1])"]
            end

            subgraph "Preprocess Py-Backend"
                direction TB
                pre1["Decode Image
                    BGR to RGB"]
                pre2["Resize (640x640)"]
                pre3["Normalize (/255.0)"]
                pre4["Transpose
                [H,W,C]->[C,H,W]"]
                pre1 --> pre2 --> pre3 --> pre4
            end

            subgraph "YOLOv8 Model ONNX Backend"
                yolo["Inference YOLOv8s"]
            end

            subgraph "Postproces Python Backend"
                direction TB
                post1["Transpose
                   Outputs"]
                post2["Filter Boxes (confidence_threshold)"]
                post3["NMS (iou_threshold)"]
                post4["Format Results [x,y,w,h,score]"]
                post1 --> post2 --> post3 --> post4
            end

            subgraph Output
                result["detection_result
                    (FP16, [-1,5])"]
            end

            raw --> pre1
            pre4 --> |"preprocessed_image (FP32, [3,-1,-1])"| yolo
            yolo --> |"output0"| post1
            conf --> post2
            iou --> post3
            post4 --> result
        end
    end

    subgraph Client
        direction TB
        client_start["Client Application"]
        response["Detections Result
                [x,y,w,h,score]"]
    end

    client_start -->|"HTTP/gRPC Request
          with raw image
          confidence_threshold
          iou_threshold"| raw
    result -->|"HTTP/gRPC Response with detections"| response
    """

    # Check if streamlit_mermaid is available
    try:
        from streamlit_mermaid import st_mermaid

        st_mermaid(mermaid_code) 
    except ImportError:
        st.warning(
            "`streamlit-mermaid` not installed. Displaying Mermaid code instead."
        )
        st.code(mermaid_code, language="mermaid")

    # Project resources
    st.markdown("---")
    st.markdown("### Project Resources")

    st.markdown(
        """
    | Resource | Links / Badges | Details |
    |----------|----------------|---------|
    | **Article** | [![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-md.svg)](https://huggingface.co/blog/samuellimabraz/signature-detection-model) | A detailed community article covering the full development process of the project |
    | **Model Files** | [![HF Model](https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md.svg)](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Available formats:** [![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=flat&logo=PyTorch&logoColor=white)](https://pytorch.org/) [![ONNX](https://img.shields.io/badge/ONNX-005CED.svg?style=flat&logo=ONNX&logoColor=white)](https://onnx.ai/) [![TensorRT](https://img.shields.io/badge/TensorRT-76B900.svg?style=flat&logo=NVIDIA&logoColor=white)](https://developer.nvidia.com/tensorrt) |
    | **Dataset – Original** | [![Roboflow](https://app.roboflow.com/images/download-dataset-badge.svg)](https://universe.roboflow.com/tech-ysdkk/signature-detection-hlx8j) | 2,819 document images annotated with signature coordinates |
    | **Dataset – Processed** | [![HF Dataset](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md.svg)](https://huggingface.co/datasets/tech4humans/signature-detection) | Augmented and pre-processed version (640px) for model training |
    | **Notebooks – Model Experiments** | [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wSySw_zwyuv6XSaGmkngI4dwbj-hR4ix) [![W&B Training](https://img.shields.io/badge/W%26B_Training-FFBE00?style=flat&logo=WeightsAndBiases&logoColor=white)](https://api.wandb.ai/links/samuel-lima-tech4humans/30cmrkp8) | Complete training and evaluation pipeline with selection among different architectures (yolo, detr, rt-detr, conditional-detr, yolos) |
    | **Notebooks – HP Tuning** | [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wSySw_zwyuv6XSaGmkngI4dwbj-hR4ix) [![W&B HP Tuning](https://img.shields.io/badge/W%26B_HP_Tuning-FFBE00?style=flat&logo=WeightsAndBiases&logoColor=white)](https://api.wandb.ai/links/samuel-lima-tech4humans/31a6zhb1) | Optuna trials for optimizing the precision/recall balance |
    | **Inference Server** | [![GitHub](https://img.shields.io/badge/Deploy-ffffff?style=for-the-badge&logo=github&logoColor=black)](https://github.com/tech4ai/t4ai-signature-detect-server) | Complete deployment and inference pipeline with Triton Inference Server<br> [![OpenVINO](https://img.shields.io/badge/OpenVINO-00c7fd?style=flat&logo=intel&logoColor=white)](https://docs.openvino.ai/2025/index.html) [![Docker](https://img.shields.io/badge/Docker-2496ED?logo=docker&logoColor=fff)](https://www.docker.com/) [![Triton](https://img.shields.io/badge/Triton-Inference%20Server-76B900?labelColor=black&logo=nvidia)](https://developer.nvidia.com/triton-inference-server) |
    | **Live Demo** | [![HF Space](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md.svg)](https://huggingface.co/spaces/tech4humans/signature-detection) | Graphical interface with real-time inference<br> [![Gradio](https://img.shields.io/badge/Gradio-FF5722?style=flat&logo=Gradio&logoColor=white)](https://www.gradio.app/) [![Plotly](https://img.shields.io/badge/PLotly-000000?style=flat&logo=plotly&logoColor=white)](https://plotly.com/python/) |
    """,
        unsafe_allow_html=True,
    )

    # Live demo using iframe
    st.markdown("### Live Demo")
    st.components.v1.iframe(
        "https://tech4humans-signature-detection.hf.space", height=1000, scrolling=True
    )

    # Project impact
    st.markdown("---")
    st.markdown("### Project Impact")

    col1, col2 = st.columns(2)

    with col1:
        st.markdown(
            """
        #### Community Recognition
        
        This project gained visibility in the ML community:
        
        - +100 upvote in Community Articles
        - Shared by [Merve Noyan](https://huggingface.co/merve) on LinkedIn
        - Served as a reference for end-to-end computer vision projects
        """
        )

    with col2:
        st.markdown(
            """
        #### Business Impact
        
        The model has been integrated into document processing pipelines, resulting in:
        
        - **Automation:** Reduction in manual verification steps
        - **Accuracy:** Fewer missed signatures and false positives
        - **Speed:** Faster document processing throughput
        """
        )

# Document Data Extraction Project
with projects_tab[1]:
    st.subheader("Fine-tuning Vision-Language Models for Structured Document Extraction")

    st.markdown("""
    ### Project Goal: Extracting Structured Data from Brazilian Documents

    This project explores fine-tuning open-source Vision-Language Models (VLMs) to extract structured data (JSON format) from images of Brazilian documents (National IDs - RG, Driver's Licenses - CNH, Invoices - NF) based on user-defined schemas.

    The objective wasn't to replace existing solutions immediately but to validate the capabilities of smaller, fine-tuned VLMs and our ability to train and deploy them efficiently.
    """)

    # --- Dataset Section ---
    st.markdown("---")
    st.markdown("### 1. Dataset Refinement and Preparation")
    st.markdown("""
    Building upon public datasets, we initially faced inconsistencies in annotations and data standardization.

    **Refinement Process:**
    - Manually selected and re-annotated 170 examples each for CNH and RG.
    - Selected high-quality Invoice (Nota Fiscal - NF) samples.
    - **Split:** 70% Training, 15% Validation, 15% Test, maintaining class balance using Roboflow. ([Dataset Link](https://universe.roboflow.com/tech-ysdkk/brazilian-document-extration))
    - **Augmentation:** Used Roboflow to apply image transformations (e.g., rotations, noise) to the training set, tripling its size.
    - **Preprocessing:** Resized images to a maximum of 640x640 (maintaining aspect ratio) for evaluation and training. Initially avoided complex preprocessing like grayscale conversion to prevent model bias.

    The final dataset provides a robust foundation for evaluating and fine-tuning models on specific Brazilian document types.
    """)

    # --- Evaluation Section ---
    st.markdown("---")
    st.markdown("### 2. Base Model Evaluation")
    st.markdown("""
    We benchmarked several open-source VLMs (1B to 10B parameters, suitable for L4 GPU) using the [Open VLM Leaderboard](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard) as a reference. Key architectures considered include Qwen-VL, InternVL, Ovis, MiniCPM, DeepSeek-VL, Phi-3.5-Vision, etc.

    **Efficient Inference with vLLM:**
    - Utilized **vLLM** for optimized inference, leveraging its support for various vision models and features like structured output generation (though not used in the final fine-tuned evaluations). This significantly accelerated prediction compared to standard Transformers pipelines.

    **Metrics:**
    - Developed custom Python functions to calculate field similarity between predicted and ground truth JSONs.
    - Normalized values (dates, numbers, case, special characters) and used **rapidfuzz** (based on Indel distance) for string similarity scoring (0-100).
    - Calculated overall accuracy and field coverage.
    """)

    # --- Finetuning Section ---
    st.markdown("---")
    st.markdown("### 3. Fine-tuning Experiments")
    st.markdown("""
    We fine-tuned promising architectures using parameter-efficient techniques (LoRA) to improve performance on our specific dataset.

    **Frameworks & Tools:**
    - **Unsloth:** Leveraged for optimized training kernels, initially exploring Qwen2.5 but settling on **Qwen2-VL (2B, 7B)** due to better stability and merge compatibility with vLLM.
    - **MS-Swift:** Adopted this comprehensive framework from ModelScope (Alibaba) for its broad support of architectures and fine-tuning methods. Tuned **InternVL-2.5-MPO (1B, 4B)**, **Qwen2.5-VL (3B)**, and **DeepSeek-VL2**.
    - **LoRA:** Employed low-rank adaptation (ranks 2 and 4) with RSLora decay strategy.

    **Fine-tuning Results:**
    Fine-tuning demonstrated significant accuracy improvements, especially for smaller models, making them competitive with larger base models.
    """)

    # --- Embed Performance by Category Plot ---
    st.markdown("#### Performance Comparison: Base vs. Fine-tuned (by Category)")
    try:
        # Construct path relative to the current script file
        current_dir = pathlib.Path(__file__).parent
        perf_cat_path = current_dir.parent / "assets/model_performance_by_category.html"
        if perf_cat_path.is_file():
            with open(perf_cat_path, 'r', encoding='utf-8') as f:
                perf_cat_html = f.read()
            components.html(perf_cat_html, height=700, scrolling=True)
        else:
            st.warning(f"Performance by category plot file not found at `{perf_cat_path}`")
    except NameError:
         # Handle case where __file__ is not defined
         st.warning("Cannot determine file path automatically. Make sure `assets/model_performance_by_category.html` exists relative to the execution directory.")
    except Exception as e:
        st.error(f"Error loading performance by category plot: {e}")

    # --- Embed Heatmap Plot ---
    st.markdown("#### Accuracy Heatmap (Base Models)")
    try:
        # Construct path relative to the current script file
        current_dir = pathlib.Path(__file__).parent
        heatmap_path = current_dir.parent / "assets/heatmap_accuracy.html"
        if heatmap_path.is_file():
            with open(heatmap_path, 'r', encoding='utf-8') as f:
                heatmap_html = f.read()
            components.html(heatmap_html, height=600, scrolling=True)
        else:
            st.warning(f"Heatmap plot file not found at `{heatmap_path}`")
    except NameError:
         # Handle case where __file__ is not defined (e.g. interactive environment)
         st.warning("Cannot determine file path automatically. Make sure `assets/heatmap_accuracy.html` exists relative to the execution directory.")
    except Exception as e:
        st.error(f"Error loading heatmap plot: {e}")

    st.markdown("""
    **Key Fine-tuning Observations:**
    - **Small Models (1-3B):** Showed the largest relative gains (e.g., `InternVL2_5-1B-MPO-tuned` +28% absolute accuracy, reaching 83% overall). Fine-tuned small models outperformed larger base models.
    - **Medium Models (~4B):** Also improved significantly (e.g., `InternVL2_5-4B-MPO-tuned` +18%, reaching 87% overall, with >90% on CNH).
    - **Large Models (7B+):** Showed more modest gains (+13-14%), suggesting diminishing returns for fine-tuning very large models on this dataset/task.
    - **Efficiency:** Fine-tuning often slightly *reduced* inference time, potentially because structured output guidance (used in base eval) was removed for tuned models as they performed better without it.
    - **Challenge:** Extracting data from Invoices (NF) remained the most difficult task, even after tuning (max ~77% accuracy).
    """)

    # --- Generalization Section ---
    st.markdown("---")
    st.markdown("### 4. Generalization Analysis (Ongoing)")
    st.markdown("""
    To assess if fine-tuning caused the models to "forget" how to handle different document types, we are evaluating their performance on an out-of-distribution dataset.

    **Methodology:**
    - Used the English-language [`getomni-ai/ocr-benchmark`](https://huggingface.co/datasets/getomni-ai/ocr-benchmark) dataset.
    - Selected samples from 8 document types with varying layouts and relatively simple JSON schemas.
    - Focus is on the *relative* performance drop between the base model and its fine-tuned version on these unseen documents, rather than absolute accuracy.

    **Preliminary Results:**
    This plot compares the performance of base vs. fine-tuned models on the original Brazilian dataset vs. the English benchmark dataset. (*Note: Evaluation is ongoing*)
    """)

    # --- Embed Generalization Plot ---
    st.markdown("#### Generalization Performance: Original vs. English Benchmark")
    try:
        # Construct path relative to the current script file
        current_dir = pathlib.Path(__file__).parent
        gen_path = current_dir.parent / "assets/generic_eval_all.html"
        if gen_path.is_file():
            with open(gen_path, 'r', encoding='utf-8') as f:
                gen_html = f.read()
            components.html(gen_html, height=850, scrolling=True)
        else:
            st.warning(f"Generalization plot file not found at `{gen_path}`")
    except NameError:
        # Handle case where __file__ is not defined
        st.warning("Cannot determine file path automatically. Make sure `assets/generic_eval_all.html` exists relative to the execution directory.")
    except Exception as e:
        st.error(f"Error loading generalization plot: {e}")


    # --- Conclusions & Next Steps ---
    st.markdown("---")
    st.markdown("### Conclusions & Next Steps")
    st.markdown("""
    **Key Insights:**
    - Fine-tuned open-source VLMs (even smaller ones) can achieve high accuracy on specific document extraction tasks, rivaling larger models.
    - Parameter-efficient fine-tuning (LoRA) with tools like Unsloth and MS-Swift is effective and feasible on standard hardware (e.g., L4 GPU).
    - vLLM significantly optimizes inference speed for VLMs.
    - There's a trade-off: Fine-tuning boosts performance on target domains but may reduce generalization to unseen document types (analysis ongoing).

    **Ongoing Work:**
    - Completing the generalization evaluation.
    - Implementing a production-ready inference pipeline using optimized fine-tuned models.
    - Exploring few-shot adaptation techniques for new document types.
    - Investigating model distillation to potentially create even smaller, efficient models.
    """)


# Additional career highlights
st.markdown("---")
st.subheader("Additional ML Engineering Experience at Tech4Humans")

st.markdown(
    """
Beyond the computer vision projects detailed above, my role at Tech4Humans has involved:

- **MLOps Pipeline Development:** Building robust training and deployment pipelines for ML models
- **Performance Optimization:** Tuning models for efficient inference in resource-constrained environments
- **Data Engineering:** Creating pipelines for data acquisition, cleaning, and annotation
- **Model Monitoring:** Implementing systems to track model performance and detect drift
- **Client Consulting:** Working directly with clients to understand requirements and translate them into ML solutions
"""
)