line-follow-pid / app.py
samuellimabraz's picture
Add Twilio integration for TURN server configuration in WebRTC setup, update video attributes, and create .gitignore for environment files and cache.
2d11b00 unverified
import os
import cv2
import math
import numpy as np
import av
import streamlit as st
import pandas as pd
import altair as alt
import time
from streamlit_webrtc import (
webrtc_streamer,
VideoProcessorBase,
WebRtcMode,
VideoHTMLAttributes,
)
from streamlit_autorefresh import st_autorefresh
from twilio.rest import Client
from line_detector import (
LineDetector,
HoughLinesP,
AdaptiveHoughLinesP,
RansacLine,
RotatedRect,
FitEllipse,
)
from pid_controller import PIDController
# Set page configuration
st.set_page_config(
page_title="Line Follower PID",
page_icon="🚁",
layout="wide",
initial_sidebar_state="expanded",
)
def get_ice_servers():
"""
Get ICE servers configuration.
For Streamlit Cloud deployment, a TURN server is required in addition to STUN.
This function will try to use Twilio's TURN server service if credentials are available,
otherwise it falls back to a free STUN server from Google.
"""
try:
# Try to get Twilio credentials from environment variables
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
if account_sid and auth_token:
client = Client(account_sid, auth_token)
token = client.tokens.create()
return token.ice_servers
else:
st.warning(
"Twilio credentials not found. Using free STUN server only, which may not work reliably." # Removed Streamlit Cloud mention for generality
)
except Exception as e:
st.error(f"Error setting up Twilio TURN servers: {e}")
# Fallback to Google's free STUN server
return [{"urls": ["stun:stun.l.google.com:19302"]}]
# Apply custom CSS for a modern minimalist design
st.markdown(
"""
<style>
/* --- General Improvements (Dark Mode) --- */
body {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif;
background-color: #0E1117; /* Dark background */
color: #FAFAFA; /* Light default text */
}
.main .block-container {
padding-top: 2rem;
padding-bottom: 3rem;
max-width: 1200px; /* Limit max width for better readability */
margin: auto;
}
/* --- Typography Refinements (Dark Mode) --- */
h1, h2, h3, h4, h5 {
font-weight: 600; /* Slightly bolder for hierarchy */
letter-spacing: -0.8px; /* Tighter spacing */
color: #ECECEC; /* Light gray for headings */
}
h1 {
font-size: 2.4rem;
margin-bottom: 0.5rem;
color: #FFFFFF; /* Brighter white for main title */
}
h2 {
font-size: 1.75rem;
margin-bottom: 1rem; /* More space below H2 */
border-bottom: 1px solid #31333F; /* Subtle dark separator */
padding-bottom: 0.5rem;
}
h3 {
font-size: 1.4rem;
margin-bottom: 0.75rem;
font-weight: 500;
color: #A0A0A0; /* Softer light gray */
}
h4 {
font-size: 1.1rem;
font-weight: 500;
color: #888888; /* Dimmer gray */
margin-bottom: 0.5rem;
}
h5 {
font-size: 0.95rem;
font-weight: 600;
color: #B0B0B0; /* Medium light gray */
margin-bottom: 0.3rem;
text-transform: uppercase; /* Uppercase for subsection titles */
letter-spacing: 0.5px;
}
/* --- Sidebar Styling (Dark Mode) --- */
.stSidebar {
background-color: #1E1E1E; /* Dark gray sidebar */
border-right: 1px solid #31333F; /* Subtle dark border */
}
.stSidebar h2 {
border-bottom: none; /* Remove border for sidebar H2 */
text-align: center;
font-size: 1.6rem;
color: #FAFAFA; /* Light text */
}
.stSidebar h3 {
font-size: 1.1rem;
color: #00A1E0; /* Brighter blue accent for dark bg */
margin-top: 1.5rem;
margin-bottom: 0.5rem;
}
.stSidebar .stMarkdown p, .stSidebar .stSlider label, .stSidebar .stSelectbox label {
color: #C0C0C0; /* Lighter text for sidebar elements */
}
/* --- Controls and Inputs (Dark Mode) --- */
.stSlider label, .stSelectbox label {
font-size: 0.85rem;
font-weight: 500;
color: #C0C0C0; /* Light gray labels */
margin-bottom: 0.2rem;
}
.stSlider {
padding-top: 0.1rem;
padding-bottom: 0.8rem;
}
.stSelectbox > div > div { /* Target selectbox input */
background-color: #262730;
border: 1px solid #31333F;
color: #FAFAFA;
}
.stSelectbox svg { /* Target selectbox arrow */
fill: #FAFAFA;
}
.stSelectbox [data-baseweb="select"] > div { /* Ensure dropdown text is light */
color: #FAFAFA;
}
/* --- Buttons (Dark Mode) --- */
div.stButton > button {
border-radius: 6px; /* Slightly more rounded */
height: 2.8rem;
font-weight: 500;
border: 1px solid #00A1E0; /* Brighter blue border */
background-color: transparent; /* Transparent background */
color: #00A1E0; /* Brighter blue text */
transition: all 0.2s ease-in-out;
}
div.stButton > button:hover {
background-color: rgba(0, 161, 224, 0.1); /* Slight blue tint on hover */
color: #00C0FF; /* Even brighter blue */
border-color: #00C0FF;
box-shadow: none; /* Remove shadow */
}
/* Primary button */
div.stButton > button[kind="primary"] {
background-color: #00A1E0;
color: #0E1117; /* Dark text on bright button */
border: none;
}
div.stButton > button[kind="primary"]:hover {
background-color: #007BAA; /* Darker blue on hover */
color: #FFFFFF;
box-shadow: none;
}
/* --- Containers & Layout (Dark Mode) --- */
.stExpander {
border: 1px solid #31333F; /* Darker border */
border-radius: 8px; /* More rounded */
box-shadow: none; /* Remove shadow for flatter look */
margin-bottom: 1rem;
background-color: #262730; /* Darker container background */
}
.stExpander header {
font-weight: 500;
color: #C0C0C0; /* Lighter header text */
}
.stExpander p, .stExpander li {
color: #B0B0B0; /* Light gray text inside expander */
}
/* --- Tabs Styling (Dark Mode) --- */
.stTabs [data-baseweb="tab-list"] {
gap: 5px; /* More gap between tabs */
border-bottom: 2px solid #31333F; /* Darker bottom border */
}
.stTabs [data-baseweb="tab"] {
height: 2.8rem;
background-color: #1E1E1E; /* Darker tab background */
border-radius: 6px 6px 0 0; /* Rounded top corners */
padding: 10px 15px;
font-weight: 500;
color: #888888; /* Dimmer inactive tab color */
border: 1px solid transparent; /* Prepare for border */
border-bottom: none;
transition: background-color 0.2s ease, color 0.2s ease;
}
.stTabs [aria-selected="true"] {
background-color: #262730; /* Slightly lighter background for active tab */
color: #00A1E0; /* Accent color for active tab */
border-color: #31333F #31333F #262730; /* Connect border */
font-weight: 600;
}
/* --- Metrics Styling (Dark Mode) --- */
[data-testid="stMetric"] {
background-color: #262730; /* Dark background for metrics */
border: 1px solid #31333F; /* Darker border */
border-radius: 8px;
padding: 1rem;
text-align: center;
}
[data-testid="stMetricValue"] {
font-size: 1.8rem !important; /* Larger metric value */
font-weight: 600 !important;
color: #FAFAFA; /* Light value text */
}
[data-testid="stMetricLabel"] {
font-size: 0.8rem !important;
color: #888888; /* Dimmer label text */
text-transform: uppercase;
letter-spacing: 0.5px;
}
/* --- Chart Container (Dark Mode) --- */
.chart-container { /* Ensure chart has a dark background */
background: #262730; /* Dark background for chart */
border-radius: 8px;
padding: 1rem;
border: 1px solid #31333F; /* Darker border */
margin-top: 1.5rem;
}
/* Make Altair chart text light */
.chart-container .mark-text text {
fill: #FAFAFA;
}
.chart-container .axis-title {
fill: #C0C0C0;
}
.chart-container .axis text {
fill: #A0A0A0;
}
.chart-container .legend-title {
fill: #C0C0C0;
}
.chart-container .legend-label text {
fill: #A0A0A0;
}
/* --- Video Container (Dark Mode) --- */
/* Styles applied directly in Python code might override this */
.stWebRTC {
border-radius: 8px;
overflow: hidden;
border: 1px solid #31333F; /* Darker border */
margin-bottom: 1rem; /* Add some space below video */
}
/* --- Clean Dividers (Dark Mode) --- */
hr {
border: none;
border-top: 1px solid #31333F; /* Darker divider */
margin: 2rem 0;
}
/* --- Hide Streamlit Footer --- */
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
""",
unsafe_allow_html=True,
)
# App header with minimalist design
st.title("🚁 Drone Line Follower")
st.markdown("Vision-based line tracking with real-time PID control")
# Add project description
st.markdown(
"""
This application simulates a drone's line-following behavior using visual information.
It processes an image feed, applies a color filter (HSV) to isolate the line,
approximates the line's position and angle using selectable methods
(like HoughLinesP, RANSAC, etc.), and uses PID controllers to adjust the simulated
drone's angle (yaw) and lateral position (roll) to stay centered on the line.
"""
)
# Add a neat divider
st.markdown("<hr>", unsafe_allow_html=True)
# Setup the sidebar with camera parameters
with st.sidebar:
st.markdown("## Control Panel")
# Method selection with modern look
st.markdown("### Detection Method")
method_name = st.selectbox(
"Select algorithm",
[
"HoughLinesP",
"AdaptiveHoughLinesP",
"RansacLine",
"FitEllipse",
"RotatedRect",
],
)
# Create tabs for different setting categories
settings_tab, tuning_tab = st.tabs(["Camera Settings", "PID Tuning"])
with settings_tab:
# HSV Filter with modern sliders
st.markdown("#### HSV Filter")
# Create two columns for min/max values
col_min, col_max = st.columns(2)
with col_min:
st.markdown("##### Min")
h_min = st.slider("H min", 0, 179, 0)
s_min = st.slider("S min", 0, 255, 0)
v_min = st.slider("V min", 0, 255, 0)
with col_max:
st.markdown("##### Max")
h_max = st.slider("H max", 0, 179, 179)
s_max = st.slider("S max", 0, 255, 255)
v_max = st.slider("V max", 0, 255, 255)
# ROI settings
st.markdown("#### Region of Interest")
roi_width = st.slider("Width", 50, 640, 320, step=10)
roi_height = st.slider("Height", 50, 480, 240, step=10)
with tuning_tab:
# PID Controller Settings with better organization
st.markdown("#### Angle Control (Yaw)")
# PID Parameters for Angle Control
angle_kp = st.slider(
"Kp", 0.0, 5.0, 1.0, 0.1, help="Proportional gain for angle control"
)
angle_ki = st.slider(
"Ki", 0.0, 1.0, 0.0, 0.01, help="Integral gain for angle control"
)
angle_kd = st.slider(
"Kd", 0.0, 5.0, 0.5, 0.1, help="Derivative gain for angle control"
)
angle_setpoint = st.slider(
"Setpoint",
-90.0,
90.0,
0.0,
1.0,
help="Desired angle in degrees (0° = vertical)",
)
st.markdown("#### Position Control (Roll)")
# PID Parameters for Position Control
pos_kp = st.slider(
"Kp",
0.0,
2.0,
0.5,
0.05,
help="Proportional gain for position control",
)
pos_ki = st.slider(
"Ki",
0.0,
1.0,
0.0,
0.01,
help="Integral gain for position control",
)
pos_kd = st.slider(
"Kd",
0.0,
5.0,
0.2,
0.05,
help="Derivative gain for position control",
)
pos_setpoint = st.slider(
"Setpoint",
-100,
100,
0,
1,
help="Desired position (0 = center of frame)",
)
# Reset PID Controllers Button - outside tabs for easy access
if st.button("Reset PID Controllers", type="primary"):
st.session_state.reset_pid = True
else:
st.session_state.reset_pid = False
# Add instructions at the bottom of sidebar
with st.expander("How to use", expanded=False):
st.markdown(
"""
### Quick Guide
1. **Start camera** stream
2. **Adjust HSV filters** to isolate the line
3. **Set region of interest** for detection
4. **Choose detection algorithm**
5. **Tune PID parameters**:
- Start with Kp only
- Add Kd to reduce oscillation
- Add Ki to eliminate steady-state error
[About PID tuning →](https://youtu.be/wkfEZmsQqiA?si=uikKLLS4MLxxTI5m)
"""
)
# Map method names to actual methods
method_map = {
"HoughLinesP": HoughLinesP,
"AdaptiveHoughLinesP": AdaptiveHoughLinesP,
"RansacLine": RansacLine,
"FitEllipse": FitEllipse,
"RotatedRect": RotatedRect,
}
# Initialize session state for HSV values, method, and ROI settings
if "hsv_lower" not in st.session_state:
st.session_state.hsv_lower = [h_min, s_min, v_min]
st.session_state.hsv_upper = [h_max, s_max, v_max]
st.session_state.method = method_name
st.session_state.roi_width = roi_width
st.session_state.roi_height = roi_height
# Update session state with current values
st.session_state.hsv_lower = [h_min, s_min, v_min]
st.session_state.hsv_upper = [h_max, s_max, v_max]
st.session_state.method = method_name
st.session_state.roi_width = roi_width
st.session_state.roi_height = roi_height
# Initialize session state for PID outputs
if "yaw_output" not in st.session_state:
st.session_state.yaw_output = 0.0
st.session_state.roll_output = 0.0
st.session_state.p_term_angle = 0.0
st.session_state.i_term_angle = 0.0
st.session_state.d_term_angle = 0.0
st.session_state.p_term_pos = 0.0
st.session_state.i_term_pos = 0.0
st.session_state.d_term_pos = 0.0
class VideoTransformer(VideoProcessorBase):
def __init__(self):
self.detector = LineDetector(estimation_method=HoughLinesP)
self.hsv_lower = np.array([0, 0, 0], dtype=np.uint8)
self.hsv_upper = np.array([179, 255, 255], dtype=np.uint8)
self.method = HoughLinesP
self.roi_size = (320, 240)
# Initialize PID Controllers
self.angle_pid = PIDController(
kp=1.0, ki=0.0, kd=0.5, setpoint=0.0, min_output=-100, max_output=100
)
self.position_pid = PIDController(
kp=0.5, ki=0.0, kd=0.2, setpoint=0.0, min_output=-100, max_output=100
)
# Frame counter for smoother updates
self.frame_count = 0
# Initialize instance variables for PID outputs
self.yaw_output = 0.0
self.roll_output = 0.0
self.p_term_angle = 0.0
self.i_term_angle = 0.0
self.d_term_angle = 0.0
self.p_term_pos = 0.0
self.i_term_pos = 0.0
self.d_term_pos = 0.0
def recv(self, frame: av.VideoFrame) -> av.VideoFrame:
img = frame.to_ndarray(format="bgr24")
# Update detector with latest settings
self.detector.color_detector.hsv_color = np.vstack(
[self.hsv_lower, self.hsv_upper]
)
self.detector.estimation_method = self.method
# Run detection
output, roi_mask, cx, ang, conf = self.detector.detect_line(
img, region=self.roi_size, draw=False
)
# Reset PID controllers if requested
if "reset_pid" in st.session_state and st.session_state.reset_pid:
self.angle_pid.reset()
self.position_pid.reset()
st.session_state.reset_pid = False
# Update PID controllers with latest settings
self.angle_pid.kp = st.session_state.get("angle_kp", 1.0)
self.angle_pid.ki = st.session_state.get("angle_ki", 0.0)
self.angle_pid.kd = st.session_state.get("angle_kd", 0.5)
self.angle_pid.setpoint = st.session_state.get("angle_setpoint", 0.0)
self.position_pid.kp = st.session_state.get("pos_kp", 0.5)
self.position_pid.ki = st.session_state.get("pos_ki", 0.0)
self.position_pid.kd = st.session_state.get("pos_kd", 0.2)
self.position_pid.setpoint = st.session_state.get("pos_setpoint", 0.0)
# Compute PID outputs based on detected values
yaw_output = roll_output = 0.0
if not math.isnan(ang) and not math.isnan(cx):
# Get image dimensions
h, w = img.shape[:2]
# Normalize center position to be relative to center of frame
# cx is already relative to ROI
normalized_cx = cx - (w / 2)
# Calculate PID outputs
yaw_output, p_angle, i_angle, d_angle = self.angle_pid.compute(ang)
roll_output, p_pos, i_pos, d_pos = self.position_pid.compute(normalized_cx)
self.yaw_output = yaw_output
self.roll_output = roll_output
self.p_term_angle = p_angle
self.i_term_angle = i_angle
self.d_term_angle = d_angle
self.p_term_pos = p_pos
self.i_term_pos = i_pos
self.d_term_pos = d_pos
self.frame_count += 1
else:
self.yaw_output = 0.0
self.roll_output = 0.0
# Draw diagnostics with modern minimalist style
h, w = img.shape[:2]
# Modern color scheme for all UI elements
roi_color = (41, 128, 185) # Blue
text_bg_color = (52, 73, 94, 200) # Dark slate with higher opacity
text_color = (255, 255, 255) # Pure white for better contrast
# Create a clean, non-obtrusive design
# Draw ROI rectangle with modern blue color and thinner line
cx_mask, cy_mask = w // 2, h // 2
w_roi, h_roi = self.roi_size
off_x, off_y = cx_mask - w_roi // 2, cy_mask - h_roi // 2
top_left = (off_x, off_y)
bottom_right = (off_x + w_roi, off_y + h_roi)
# Draw more professional ROI border - thinner and with rounded corners effect
cv2.rectangle(output, top_left, bottom_right, roi_color, 2)
# Draw dots at corners for rounded look
corner_radius = 3
for corner in [
top_left,
(bottom_right[0], top_left[1]),
(top_left[0], bottom_right[1]),
bottom_right,
]:
cv2.circle(output, corner, corner_radius, roi_color, -1)
# Create a cleaner info overlay
# Bottom right position for less interference with the line
overlay_height = 90
overlay_width = 200
overlay_margin = 15
overlay_position = (
w - overlay_width - overlay_margin,
h - overlay_height - overlay_margin,
)
# Create semi-transparent overlay
overlay = output.copy()
cv2.rectangle(
overlay,
overlay_position,
(overlay_position[0] + overlay_width, overlay_position[1] + overlay_height),
text_bg_color[:3], # OpenCV doesn't support alpha in rectangle
-1,
)
# Apply transparency
alpha = 0.75
cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)
# Add a subtle border
cv2.rectangle(
output,
overlay_position,
(overlay_position[0] + overlay_width, overlay_position[1] + overlay_height),
(255, 255, 255, 128), # White border
1,
)
# Modern font
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.55
font_thickness = 1
line_height = 20
# Start position for text
text_start_x = overlay_position[0] + 10
text_start_y = overlay_position[1] + 20
# Function to draw text with subtle shadow for better readability
def draw_text_with_shadow(text, pos_y, color=text_color):
# Shadow effect (subtle)
cv2.putText(
output,
text,
(text_start_x + 1, pos_y + 1),
font,
font_scale,
(0, 0, 0, 150),
font_thickness,
)
# Main text
cv2.putText(
output,
text,
(text_start_x, pos_y),
font,
font_scale,
color,
font_thickness,
)
# Draw sensor values with more modern, clean formatting
draw_text_with_shadow("Line Detection", text_start_y - 5)
# Add a subtle underline
cv2.line(
output,
(text_start_x, text_start_y + 2),
(text_start_x + 100, text_start_y + 2),
(255, 255, 255, 150),
1,
)
if not math.isnan(ang):
draw_text_with_shadow(f"Angle: {ang:.1f}", text_start_y + line_height)
else:
draw_text_with_shadow("Angle: --", text_start_y + line_height)
if not math.isnan(cx):
draw_text_with_shadow(f"Position: {cx:.1f}", text_start_y + 2 * line_height)
else:
draw_text_with_shadow("Position: --", text_start_y + 2 * line_height)
# Draw PID outputs with color indication
yaw_color = (130, 220, 255) if abs(yaw_output) < 50 else (130, 130, 255)
draw_text_with_shadow(
f"Control: {yaw_output:.1f}, {roll_output:.1f}",
text_start_y + 3 * line_height,
yaw_color,
)
# Fetch the intermediate results for preview
filtered = self.detector.color_detector.result
# Prepare filtered preview - more compact
pw, ph = w // 6, h // 6 # Smaller preview size
filtered_preview = cv2.resize(filtered, (pw, ph))
# Add a cleaner border to the preview
filtered_preview = cv2.copyMakeBorder(
filtered_preview, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=(255, 255, 255)
)
# Position the filter preview in top-right corner more elegantly
preview_padding = 10
output[
preview_padding : preview_padding + ph + 2,
w - pw - preview_padding - 2 : w - preview_padding,
] = filtered_preview
# Add a small "Filter" label above the preview for clarity
small_font_scale = 0.4
cv2.putText(
output,
"Filter",
(w - pw - preview_padding, preview_padding - 4),
font,
small_font_scale,
(255, 255, 255),
1,
)
return av.VideoFrame.from_ndarray(output, format="bgr24")
# Create a simplified layout with two main rows instead of tabs
col1, col2 = st.columns([3, 1], gap="large")
with col1:
# Video stream (expanded from the tab layout)
st.markdown("### Line Following Camera")
# Wrap WebRTC in a div for styling (optional, if needed)
st.markdown('<div class="stWebRTC">', unsafe_allow_html=True)
# Create the webrtc component
webrtc_ctx = webrtc_streamer(
key="line-detection",
mode=WebRtcMode.SENDRECV,
rtc_configuration={"iceServers": get_ice_servers()},
video_processor_factory=VideoTransformer,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
video_html_attrs=VideoHTMLAttributes(
autoPlay=True,
controls=False,
style={
"width": f"1280px",
"height": f"720px",
"border-radius": "8px",
"margin": "0 auto",
"display": "block",
"border": "2px solid #AAAAAA", # Changed border to lighter grey
},
),
)
# Pass the settings to the video transformer
if webrtc_ctx.video_processor:
webrtc_ctx.video_processor.hsv_lower = np.array(
st.session_state.hsv_lower, dtype=np.uint8
)
webrtc_ctx.video_processor.hsv_upper = np.array(
st.session_state.hsv_upper, dtype=np.uint8
)
webrtc_ctx.video_processor.method = method_map[st.session_state.method]
webrtc_ctx.video_processor.roi_size = (
st.session_state.roi_width,
st.session_state.roi_height,
)
# Get the latest PID outputs from the video processor
if webrtc_ctx.state.playing:
st.session_state.yaw_output = webrtc_ctx.video_processor.yaw_output
st.session_state.roll_output = webrtc_ctx.video_processor.roll_output
st.session_state.p_term_angle = webrtc_ctx.video_processor.p_term_angle
st.session_state.i_term_angle = webrtc_ctx.video_processor.i_term_angle
st.session_state.d_term_angle = webrtc_ctx.video_processor.d_term_angle
st.session_state.p_term_pos = webrtc_ctx.video_processor.p_term_pos
st.session_state.i_term_pos = webrtc_ctx.video_processor.i_term_pos
st.session_state.d_term_pos = webrtc_ctx.video_processor.d_term_pos
with col2:
# Simplified metrics section that shows only essential values
st.markdown("### Control Values")
# Display the most important metrics in a clean format
# Use vertical layout for metrics instead of columns
st.metric("Angle Control (Yaw)", f"{st.session_state.get('yaw_output', 0):.1f}")
st.metric(
"Position Control (Roll)", f"{st.session_state.get('roll_output', 0):.1f}"
)
# Add vertical space before button
st.markdown("<br>", unsafe_allow_html=True)
# Add a reset button for the PID controllers
if st.button("Reset PID Controllers", use_container_width=True, type="primary"):
st.session_state.reset_pid = True
# Create a dedicated row for the PID control graph
st.markdown("<hr>", unsafe_allow_html=True) # Add divider before graph
st.markdown("### PID Controller Output")
chart_placeholder = st.empty()
# Initialize start_time and pid_df exactly once
if "start_time" not in st.session_state:
st.session_state.start_time = time.time()
if "pid_df" not in st.session_state:
# start with a single zero row so the chart axes are set
st.session_state.pid_df = pd.DataFrame([{"time_rel": 0.0, "yaw": 0.0, "roll": 0.0}])
# auto‐refresh every 100 ms
st_autorefresh(interval=500, limit=None, key="pid_refresh")
# On each rerun, if the camera is playing, append the newest PID outputs
if webrtc_ctx.state.playing:
t = time.time() - st.session_state.start_time
new_row = pd.DataFrame(
[
{
"time_rel": t,
"yaw": st.session_state.yaw_output,
"roll": st.session_state.roll_output,
}
]
)
st.session_state.pid_df = pd.concat(
[st.session_state.pid_df, new_row], ignore_index=True
)
# keep only last 100 points
if len(st.session_state.pid_df) > 100:
st.session_state.pid_df = st.session_state.pid_df.iloc[-100:].reset_index(
drop=True
)
# Build an Altair “folded” chart so you can see both yaw and roll
# 1) grab the wide‐form DataFrame
df = st.session_state.pid_df
# 2) melt it into long‐form
df_long = df.melt(
id_vars=["time_rel"],
value_vars=["yaw", "roll"],
var_name="Signal",
value_name="Value",
)
# 3) build your Altair chart off of df_long
chart = (
alt.Chart(df_long)
.mark_line(point=False) # Use point=False for cleaner lines
.encode(
x=alt.X("time_rel:Q", title="Time (s)"),
y=alt.Y("Value:Q", title="Controller Output Value"),
color=alt.Color(
"Signal:N",
title="Control Signal",
scale=alt.Scale(domain=["yaw", "roll"], range=["#007bff", "#ff7f0e"]),
), # Custom colors
tooltip=[
alt.Tooltip("time_rel", title="Time (s)", format=".2f"),
alt.Tooltip("Signal", title="Control Signal"),
alt.Tooltip("Value", title="Output Value", format=".2f"),
],
)
.properties(height=350) # Slightly taller chart
.interactive() # Enable zooming and panning
)
# 4) draw it inside a container for styling
with st.container():
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
chart_placeholder.altair_chart(chart, use_container_width=True)
st.markdown("</div>", unsafe_allow_html=True)
# Hide Streamlit footer/menu
st.markdown(
"""
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
""",
unsafe_allow_html=True,
)