sanabanu31's picture
Update app.py
cea309f verified
raw
history blame
1.8 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import joblib
import re
# Initialize the FastAPI app with default docs enabled
app = FastAPI(
title="Email Classification API",
version="1.0.0",
description="Classifies emails and masks PII/PCI information."
)
# Load the model once when the app starts
model = joblib.load("model.joblib")
# Define the root endpoint
@app.get("/")
def root():
return {"message": "Email Classification API is running."}
# Define input data schema
class EmailInput(BaseModel):
subject: str = ""
email: str
# Function to mask and store PII
def mask_and_store_all_pii(text):
text = str(text)
pii_map = {}
patterns = {
"email": r"\b[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+\b",
"phone_number": r"\b\d{10}\b",
"dob": r"\b\d{2}[/-]\d{2}[/-]\d{4}\b",
"aadhar_num": r"\b\d{4}[- ]?\d{4}[- ]?\d{4}\b",
"credit_debit_no": r"\b(?:\d[ -]*?){13,16}\b",
"cvv_no": r"\b\d{3}\b",
"expiry_no": r"\b(0[1-9]|1[0-2])\/\d{2,4}\b",
"full_name": r"\b([A-Z][a-z]+(?:\s[A-Z][a-z]+)+)\b"
}
for label, pattern in patterns.items():
matches = re.findall(pattern, text)
for i, match in enumerate(matches):
placeholder = f"[{label}_{i}]"
pii_map[placeholder] = match
text = text.replace(match, placeholder)
return text, pii_map
# Endpoint to classify email
@app.post("/classify")
def classify_email(data: EmailInput):
raw_text = f"{data.subject} {data.email}"
masked_text, pii_map = mask_and_store_all_pii(raw_text)
prediction = model.predict([masked_text])[0]
return {
"predicted_category": prediction,
"masked_text": masked_text,
"pii_map": pii_map
}