Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
import joblib
|
| 4 |
-
import pandas as pd
|
| 5 |
import re
|
| 6 |
from transformers import pipeline
|
| 7 |
|
|
@@ -14,28 +13,13 @@ app = FastAPI(
|
|
| 14 |
redoc_url="/redoc"
|
| 15 |
)
|
| 16 |
|
| 17 |
-
# Load
|
| 18 |
model = joblib.load("model.joblib")
|
| 19 |
|
| 20 |
-
# Initialize NER pipeline
|
| 21 |
ner = pipeline('ner', model='Davlan/xlm-roberta-base-ner-hrl', grouped_entities=True)
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
class EmailInput(BaseModel):
|
| 25 |
-
input_email_body: str
|
| 26 |
-
|
| 27 |
-
class TrainingExample(BaseModel):
|
| 28 |
-
email_body: str
|
| 29 |
-
label: str
|
| 30 |
-
|
| 31 |
-
# Map NER labels to types
|
| 32 |
-
NER_TO_TOKEN = {
|
| 33 |
-
'PER': 'full_name',
|
| 34 |
-
'EMAIL': 'email',
|
| 35 |
-
'DATE': 'dob'
|
| 36 |
-
}
|
| 37 |
-
|
| 38 |
-
# Regex patterns for PII
|
| 39 |
EMAIL_REGEX = r'\b[\w\.-]+@[\w\.-]+\.\w{2,}\b'
|
| 40 |
AADHAAR_REGEX = r'\b\d{4}\s?\d{4}\s?\d{4}\b'
|
| 41 |
CARD_REGEX = r'\b(?:\d[ -]*?){13,19}\b'
|
|
@@ -44,17 +28,28 @@ EXPIRY_REGEX = r'\b(0[1-9]|1[0-2])[\/\-]\d{2,4}\b'
|
|
| 44 |
PHONE_REGEX = r'\+?\d[\d\s\-]{7,14}\d'
|
| 45 |
DOB_REGEX = r'\b\d{1,2}[\/\-\.\s]\d{1,2}[\/\-\.\s]\d{2,4}\b'
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
'full_name': 0, 'email': 0, 'phone_number': 0, 'dob': 0,
|
| 53 |
-
'aadhar_num': 0, 'credit_debit_no': 0, 'cvv_no': 0, 'expiry_no': 0
|
| 54 |
-
}
|
| 55 |
-
entity_list = []
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
entities = ner(text)
|
| 59 |
for ent in entities:
|
| 60 |
label = ent['entity_group']
|
|
@@ -63,17 +58,11 @@ def mask_and_store_all_pii(text):
|
|
| 63 |
original = ent['word'].replace('##', '')
|
| 64 |
token = f"[{token_name}_{counter[token_name]:03d}]"
|
| 65 |
if original in text:
|
| 66 |
-
start = text.index(original)
|
| 67 |
text = text.replace(original, token, 1)
|
| 68 |
mapping[token] = original
|
| 69 |
counter[token_name] += 1
|
| 70 |
-
entity_list.append({
|
| 71 |
-
"position": [start, start + len(token)],
|
| 72 |
-
"classification": token_name,
|
| 73 |
-
"entity": original
|
| 74 |
-
})
|
| 75 |
|
| 76 |
-
#
|
| 77 |
regex_map = [
|
| 78 |
(CARD_REGEX, 'credit_debit_no'),
|
| 79 |
(AADHAAR_REGEX, 'aadhar_num'),
|
|
@@ -83,35 +72,37 @@ def mask_and_store_all_pii(text):
|
|
| 83 |
(EMAIL_REGEX, 'email'),
|
| 84 |
(DOB_REGEX, 'dob')
|
| 85 |
]
|
|
|
|
| 86 |
for regex, token_name in regex_map:
|
| 87 |
-
|
| 88 |
original = match.group(0)
|
| 89 |
token = f"[{token_name}_{counter[token_name]:03d}]"
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
counter[token_name] += 1
|
| 95 |
-
entity_list.append({
|
| 96 |
-
"position": [start, start + len(token)],
|
| 97 |
-
"classification": token_name,
|
| 98 |
-
"entity": original
|
| 99 |
-
})
|
| 100 |
|
| 101 |
-
return text, mapping
|
| 102 |
|
| 103 |
-
#
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
masked_text = masked_text.replace(placeholder, original)
|
| 107 |
-
return masked_text
|
| 108 |
|
| 109 |
-
#
|
| 110 |
@app.post("/classify")
|
| 111 |
def classify_email(data: EmailInput):
|
| 112 |
raw_text = data.input_email_body
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
predicted_category = model.predict([masked_text])[0]
|
|
|
|
|
|
|
| 115 |
return {
|
| 116 |
"input_email_body": raw_text,
|
| 117 |
"list_of_masked_entities": entity_list,
|
|
@@ -119,7 +110,7 @@ def classify_email(data: EmailInput):
|
|
| 119 |
"category_of_the_email": predicted_category
|
| 120 |
}
|
| 121 |
|
| 122 |
-
# Health check
|
| 123 |
@app.get("/")
|
| 124 |
def root():
|
| 125 |
return {"message": "Email Classification API is running."}
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
import joblib
|
|
|
|
| 4 |
import re
|
| 5 |
from transformers import pipeline
|
| 6 |
|
|
|
|
| 13 |
redoc_url="/redoc"
|
| 14 |
)
|
| 15 |
|
| 16 |
+
# Load pre-trained model
|
| 17 |
model = joblib.load("model.joblib")
|
| 18 |
|
| 19 |
+
# Initialize NER pipeline (multilingual)
|
| 20 |
ner = pipeline('ner', model='Davlan/xlm-roberta-base-ner-hrl', grouped_entities=True)
|
| 21 |
|
| 22 |
+
# Regex patterns for PII detection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
EMAIL_REGEX = r'\b[\w\.-]+@[\w\.-]+\.\w{2,}\b'
|
| 24 |
AADHAAR_REGEX = r'\b\d{4}\s?\d{4}\s?\d{4}\b'
|
| 25 |
CARD_REGEX = r'\b(?:\d[ -]*?){13,19}\b'
|
|
|
|
| 28 |
PHONE_REGEX = r'\+?\d[\d\s\-]{7,14}\d'
|
| 29 |
DOB_REGEX = r'\b\d{1,2}[\/\-\.\s]\d{1,2}[\/\-\.\s]\d{2,4}\b'
|
| 30 |
|
| 31 |
+
NER_TO_TOKEN = {
|
| 32 |
+
'PER': 'full_name',
|
| 33 |
+
'EMAIL': 'email',
|
| 34 |
+
'DATE': 'dob'
|
| 35 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
def mask_pii(text, mapping=None, counter=None):
|
| 38 |
+
if mapping is None:
|
| 39 |
+
mapping = {}
|
| 40 |
+
if counter is None:
|
| 41 |
+
counter = {
|
| 42 |
+
'full_name': 0,
|
| 43 |
+
'email': 0,
|
| 44 |
+
'phone_number': 0,
|
| 45 |
+
'dob': 0,
|
| 46 |
+
'aadhar_num': 0,
|
| 47 |
+
'credit_debit_no': 0,
|
| 48 |
+
'cvv_no': 0,
|
| 49 |
+
'expiry_no': 0
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
# Mask NER entities first
|
| 53 |
entities = ner(text)
|
| 54 |
for ent in entities:
|
| 55 |
label = ent['entity_group']
|
|
|
|
| 58 |
original = ent['word'].replace('##', '')
|
| 59 |
token = f"[{token_name}_{counter[token_name]:03d}]"
|
| 60 |
if original in text:
|
|
|
|
| 61 |
text = text.replace(original, token, 1)
|
| 62 |
mapping[token] = original
|
| 63 |
counter[token_name] += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# Mask regex patterns
|
| 66 |
regex_map = [
|
| 67 |
(CARD_REGEX, 'credit_debit_no'),
|
| 68 |
(AADHAAR_REGEX, 'aadhar_num'),
|
|
|
|
| 72 |
(EMAIL_REGEX, 'email'),
|
| 73 |
(DOB_REGEX, 'dob')
|
| 74 |
]
|
| 75 |
+
|
| 76 |
for regex, token_name in regex_map:
|
| 77 |
+
def replacer(match):
|
| 78 |
original = match.group(0)
|
| 79 |
token = f"[{token_name}_{counter[token_name]:03d}]"
|
| 80 |
+
counter[token_name] += 1
|
| 81 |
+
mapping[token] = original
|
| 82 |
+
return token
|
| 83 |
+
text = re.sub(regex, replacer, text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
return text, mapping
|
| 86 |
|
| 87 |
+
# Input schema
|
| 88 |
+
class EmailInput(BaseModel):
|
| 89 |
+
input_email_body: str
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
# Classification Endpoint
|
| 92 |
@app.post("/classify")
|
| 93 |
def classify_email(data: EmailInput):
|
| 94 |
raw_text = data.input_email_body
|
| 95 |
+
|
| 96 |
+
# Masking using your advanced function
|
| 97 |
+
masked_text, pii_map = mask_pii(raw_text)
|
| 98 |
+
|
| 99 |
+
# Convert pii_map to a list for easier frontend use (optional)
|
| 100 |
+
entity_list = [{"placeholder": k, "original": v} for k, v in pii_map.items()]
|
| 101 |
+
|
| 102 |
+
# Prediction
|
| 103 |
predicted_category = model.predict([masked_text])[0]
|
| 104 |
+
|
| 105 |
+
# Response format
|
| 106 |
return {
|
| 107 |
"input_email_body": raw_text,
|
| 108 |
"list_of_masked_entities": entity_list,
|
|
|
|
| 110 |
"category_of_the_email": predicted_category
|
| 111 |
}
|
| 112 |
|
| 113 |
+
# Health check endpoint
|
| 114 |
@app.get("/")
|
| 115 |
def root():
|
| 116 |
return {"message": "Email Classification API is running."}
|