import gradio as gr from transformers import pipeline # Load model from Hugging Face Hub classifier = pipeline("text-classification", model="sandbox338/hatespeech") # Map model labels to readable labels label_map = { "LABEL_0": "Non-hate speech", "LABEL_1": "Political hate speech", "LABEL_2": "Offensive language" } # Classification function def classify_text(text): result = classifier(text)[0] label = result['label'] return label_map.get(label, "Unknown") # Example inputs for testing examples = [ ["Hii ni ujumbe wa kawaida bila matusi."], ["Wanasiasa hawa ni wabaya na lazima waondoke!"], ["Unasema upuuzi na wewe ni mjinga kabisa!"] ] # Gradio Interface interface = gr.Interface( fn=classify_text, inputs=gr.Textbox(lines=4, placeholder="Andika maandishi ya Kiswahili hapa..."), outputs="text", title="Swahili Hate Speech Classifier", examples=examples ) if __name__ == "__main__": interface.launch()