Spaces:
Runtime error
Runtime error
| import argparse | |
| import csv | |
| import os | |
| import warnings | |
| import torch | |
| from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, IMAGE_TOKEN_INDEX | |
| from llava.conversation import conv_templates | |
| from llava.mm_utils import get_anyres_image_grid_shape, get_model_name_from_path, process_images, tokenizer_image_token | |
| from llava.model.builder import load_pretrained_model | |
| from llava.model.llava_arch import unpad_image | |
| from llava.utils import disable_torch_init | |
| from tqdm import tqdm | |
| from .utils import extract_frames, prompts, read_video_list | |
| disable_torch_init() | |
| def prepare_inputs_labels_for_multimodal( | |
| self, input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes=None | |
| ): | |
| # llava_arch.py | |
| vision_tower = self.get_vision_tower() | |
| if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
| return input_ids, position_ids, attention_mask, past_key_values, None, labels | |
| if type(images) is list or images.ndim == 5: | |
| if type(images) is list: | |
| images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images] | |
| concat_images = torch.cat([image for image in images], dim=0) | |
| image_features = self.encode_images(concat_images) | |
| split_sizes = [image.shape[0] for image in images] | |
| image_features = torch.split(image_features, split_sizes, dim=0) | |
| mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat") | |
| image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square") | |
| if mm_patch_merge_type == "flat": | |
| image_features = [x.flatten(0, 1) for x in image_features] | |
| elif mm_patch_merge_type.startswith("spatial"): | |
| new_image_features = [] | |
| for image_idx, image_feature in enumerate(image_features): | |
| if image_feature.shape[0] > 1: | |
| base_image_feature = image_feature[0] | |
| image_feature = image_feature[1:] | |
| height = width = self.get_vision_tower().num_patches_per_side | |
| assert height * width == base_image_feature.shape[0] | |
| if image_aspect_ratio == "anyres": | |
| num_patch_width, num_patch_height = get_anyres_image_grid_shape( | |
| image_sizes[image_idx], | |
| self.config.image_grid_pinpoints, | |
| self.get_vision_tower().config.image_size, | |
| ) | |
| image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) | |
| else: | |
| raise NotImplementedError | |
| if "unpad" in mm_patch_merge_type: | |
| image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() | |
| image_feature = image_feature.flatten(1, 2).flatten(2, 3) | |
| image_feature = unpad_image(image_feature, image_sizes[image_idx]) | |
| image_feature = torch.cat( | |
| ( | |
| image_feature, | |
| self.model.image_newline[:, None, None] | |
| .expand(*image_feature.shape[:-1], 1) | |
| .to(image_feature.device), | |
| ), | |
| dim=-1, | |
| ) | |
| image_feature = image_feature.flatten(1, 2).transpose(0, 1) | |
| else: | |
| image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() | |
| image_feature = image_feature.flatten(0, 3) | |
| image_feature = torch.cat((base_image_feature, image_feature), dim=0) | |
| else: | |
| image_feature = image_feature[0] | |
| if "unpad" in mm_patch_merge_type: | |
| image_feature = torch.cat( | |
| (image_feature, self.model.image_newline[None].to(image_feature.device)), dim=0 | |
| ) | |
| new_image_features.append(image_feature) | |
| image_features = new_image_features | |
| else: | |
| raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}") | |
| else: | |
| image_features = self.encode_images(images) | |
| # TODO: image start / end is not implemented here to support pretraining. | |
| if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False): | |
| raise NotImplementedError | |
| # Let's just add dummy tensors if they do not exist, | |
| # it is a headache to deal with None all the time. | |
| # But it is not ideal, and if you have a better idea, | |
| # please open an issue / submit a PR, thanks. | |
| _labels = labels | |
| _position_ids = position_ids | |
| _attention_mask = attention_mask | |
| if attention_mask is None: | |
| attention_mask = torch.ones_like(input_ids, dtype=torch.bool) | |
| else: | |
| attention_mask = attention_mask.bool() | |
| if position_ids is None: | |
| position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) | |
| if labels is None: | |
| labels = torch.full_like(input_ids, IGNORE_INDEX) | |
| # remove the padding using attention_mask -- FIXME | |
| input_ids = [ | |
| cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask) | |
| ] | |
| labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] | |
| new_input_embeds = [] | |
| new_labels = [] | |
| cur_image_idx = 0 | |
| for batch_idx, cur_input_ids in enumerate(input_ids): | |
| num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() | |
| if num_images == 0: | |
| cur_image_features = image_features[cur_image_idx] | |
| cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) | |
| cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) | |
| new_input_embeds.append(cur_input_embeds) | |
| new_labels.append(labels[batch_idx]) | |
| cur_image_idx += 1 | |
| continue | |
| image_token_indices = ( | |
| [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] | |
| ) | |
| cur_input_ids_noim = [] | |
| cur_labels = labels[batch_idx] | |
| cur_labels_noim = [] | |
| for i in range(len(image_token_indices) - 1): | |
| cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]]) | |
| cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]) | |
| split_sizes = [x.shape[0] for x in cur_labels_noim] | |
| cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) | |
| cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) | |
| cur_new_input_embeds = [] | |
| cur_new_labels = [] | |
| for i in range(num_images + 1): | |
| cur_new_input_embeds.append(cur_input_embeds_no_im[i]) | |
| cur_new_labels.append(cur_labels_noim[i]) | |
| if i < num_images: | |
| cur_image_features = image_features[cur_image_idx] | |
| cur_image_idx += 1 | |
| cur_new_input_embeds.append(cur_image_features) | |
| cur_new_labels.append( | |
| torch.full( | |
| (cur_image_features.shape[0],), | |
| IGNORE_INDEX, | |
| device=cur_labels.device, | |
| dtype=cur_labels.dtype, | |
| ) | |
| ) | |
| cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] | |
| cur_new_input_embeds = torch.cat(cur_new_input_embeds) | |
| cur_new_labels = torch.cat(cur_new_labels) | |
| new_input_embeds.append(cur_new_input_embeds) | |
| new_labels.append(cur_new_labels) | |
| # Truncate sequences to max length as image embeddings can make the sequence longer | |
| tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None) | |
| if tokenizer_model_max_length is not None: | |
| new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] | |
| new_labels = [x[:tokenizer_model_max_length] for x in new_labels] | |
| # Combine them | |
| max_len = max(x.shape[0] for x in new_input_embeds) | |
| batch_size = len(new_input_embeds) | |
| new_input_embeds_padded = [] | |
| new_labels_padded = torch.full( | |
| (batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device | |
| ) | |
| attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) | |
| position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) | |
| for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): | |
| cur_len = cur_new_embed.shape[0] | |
| if getattr(self.config, "tokenizer_padding_side", "right") == "left": | |
| new_input_embeds_padded.append( | |
| torch.cat( | |
| ( | |
| torch.zeros( | |
| (max_len - cur_len, cur_new_embed.shape[1]), | |
| dtype=cur_new_embed.dtype, | |
| device=cur_new_embed.device, | |
| ), | |
| cur_new_embed, | |
| ), | |
| dim=0, | |
| ) | |
| ) | |
| if cur_len > 0: | |
| new_labels_padded[i, -cur_len:] = cur_new_labels | |
| attention_mask[i, -cur_len:] = True | |
| position_ids[i, -cur_len:] = torch.arange( | |
| 0, cur_len, dtype=position_ids.dtype, device=position_ids.device | |
| ) | |
| else: | |
| new_input_embeds_padded.append( | |
| torch.cat( | |
| ( | |
| cur_new_embed, | |
| torch.zeros( | |
| (max_len - cur_len, cur_new_embed.shape[1]), | |
| dtype=cur_new_embed.dtype, | |
| device=cur_new_embed.device, | |
| ), | |
| ), | |
| dim=0, | |
| ) | |
| ) | |
| if cur_len > 0: | |
| new_labels_padded[i, :cur_len] = cur_new_labels | |
| attention_mask[i, :cur_len] = True | |
| position_ids[i, :cur_len] = torch.arange( | |
| 0, cur_len, dtype=position_ids.dtype, device=position_ids.device | |
| ) | |
| new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) | |
| if _labels is None: | |
| new_labels = None | |
| else: | |
| new_labels = new_labels_padded | |
| if _attention_mask is None: | |
| attention_mask = None | |
| else: | |
| attention_mask = attention_mask.to(dtype=_attention_mask.dtype) | |
| if _position_ids is None: | |
| position_ids = None | |
| return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels | |
| def main(args): | |
| # ====================================================== | |
| # 1. read video list | |
| # ====================================================== | |
| videos = read_video_list(args.video_folder, args.output_file) | |
| f = open(args.output_file, "a") | |
| writer = csv.writer(f) | |
| # ====================================================== | |
| # 2. load model and prepare prompts | |
| # ====================================================== | |
| model_path = "liuhaotian/llava-v1.6-34b" | |
| query = prompts[args.prompt] | |
| print(f"Prompt: {query}") | |
| conv = conv_templates["chatml_direct"].copy() | |
| conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\n" + query) | |
| prompt = conv.get_prompt() | |
| with warnings.catch_warnings(): | |
| warnings.simplefilter("ignore") # Pytorch non-meta copying warning fills out the console | |
| tokenizer, model, image_processor, context_len = load_pretrained_model( | |
| model_path=model_path, | |
| model_base=None, | |
| model_name=get_model_name_from_path(model_path), | |
| ) | |
| input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
| input_ids = input_ids.unsqueeze(0).to(model.device) | |
| # ====================================================== | |
| # 3. generate captions | |
| # ====================================================== | |
| bs = args.bs | |
| for i in tqdm(range(0, len(videos), bs)): | |
| # prepare a batch of inputs | |
| video_files = videos[i : i + bs] | |
| frames = [] | |
| video_lengths = [] | |
| for video_file in video_files: | |
| frame, length = extract_frames(os.path.join(args.video_folder, video_file)) | |
| if len(frame) < 3: | |
| continue | |
| frames.append(frame) | |
| video_lengths.append(length) | |
| if len(frames) == 0: | |
| continue | |
| # encode the batch of inputs | |
| samples = [] | |
| for imgs in frames: | |
| imgs_size = [img.size for img in imgs] | |
| imgs = process_images(imgs, image_processor, model.config) | |
| imgs = imgs.to(model.device, dtype=torch.float16) | |
| with torch.inference_mode(): | |
| _, _, _, _, inputs_embeds, _ = prepare_inputs_labels_for_multimodal( | |
| model, input_ids, None, None, None, None, images=imgs, image_sizes=imgs_size | |
| ) | |
| samples.append(inputs_embeds) | |
| # padding | |
| max_len = max([sample.shape[1] for sample in samples]) | |
| attention_mask = torch.tensor( | |
| [[0] * (max_len - samples[i].shape[1]) + [1] * samples[i].shape[1] for i in range(len(samples))] | |
| ).to(model.device) | |
| inputs_embeds = [ | |
| torch.cat( | |
| [ | |
| torch.zeros( | |
| (1, max_len - samples[i].shape[1], samples[i].shape[-1]), | |
| device=model.device, | |
| dtype=torch.float16, | |
| ), | |
| samples[i], | |
| ], | |
| dim=1, | |
| ) | |
| for i in range(len(samples)) | |
| ] | |
| inputs_embeds = torch.cat(inputs_embeds, dim=0) | |
| # generate outputs | |
| output_ids = super(type(model), model).generate( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| do_sample=True, | |
| temperature=0.2, | |
| max_new_tokens=512, | |
| use_cache=True, | |
| ) | |
| outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
| outputs = [output.replace("\n", " ").strip() for output in outputs] | |
| # save results | |
| result = list(zip(video_files, outputs, video_lengths)) | |
| for t in result: | |
| writer.writerow(t) | |
| f.close() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("video_folder", type=str) | |
| parser.add_argument("output_file", type=str) | |
| parser.add_argument("--bs", type=int, default=32) | |
| parser.add_argument("--prompt", type=str, default="three_frames") | |
| args = parser.parse_args() | |
| main(args) | |