Spaces:
Sleeping
Sleeping
File size: 10,221 Bytes
19b61e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import argparse
import argparse
# import shap
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import tensorflow as tf
from utils import encode_categorical, scale_numerical, fill_nans, unpickle_file, EnsembleModel, read_data
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error, r2_score
import pickle
def predict(model_path, data, explainer=None, scaler_targets=None):
model_extension = model_path.split(".")[-1]
if model_extension == "h5":
model = tf.keras.models.load_model(model_path)
else:
model = unpickle_file(model_path)
pred = model.predict(data)
if model_extension != "h5":
# Fix for the RF model in the case where there is one feature only (other cases not supported so far)
pred = pred.reshape(-1, 1)
if scaler_targets is not None:
pred = scaler_targets.inverse_transform(pred)
if explainer:
return pred, data.columns, explainer.shap_values(data[-10:])
else:
return pred
def predict_from_multiple_models(
models_order, model_path_dict, data, explainer_path_dict={}, scaler_targets_path_dict={}
):
"""
This function is used in the gradio to predict different targets from different models
"""
y_pred_list = []
shap_values_list = []
for predict_name in models_order:
if predict_name in scaler_targets_path_dict.keys():
scaler_targets = unpickle_file(scaler_targets_path_dict[predict_name])
else:
scaler_targets = None
if predict_name in explainer_path_dict.keys():
explainer = unpickle_file(explainer_path_dict[predict_name])
y_pred, _, shap_values = predict(
model_path_dict[predict_name], data, explainer=explainer, scaler_targets=scaler_targets
)
shap_values_list += [shap_values]
else:
explainer = None
y_pred = predict(model_path_dict[predict_name], data, explainer=explainer, scaler_targets=scaler_targets)
df_pred_task = pd.DataFrame(y_pred, columns=[predict_name])
# y_pred_list += [y_pred[0][0]]
y_pred_list.append(df_pred_task)
df_pred = pd.concat(y_pred_list, axis=1)
if len(shap_values_list) > 0:
return df_pred, shap_values_list
else:
return df_pred
def predict_from_ensemble_model(ensemble_model_path, data, explainer=None, uncertainty_type="confidence_interval"):
"""
Returns the prediction of the model defnied using the EnsembleModel class
"""
ensemble_model = unpickle_file(ensemble_model_path)
pred_mean, pred_uncertainty = ensemble_model.predict_w_uncertainty(data, uncertainty_type=uncertainty_type)
if explainer is not None:
shap_values = explainer.shap_values(data[-10:])
return pred_mean, pred_uncertainty, shap_values
return pred_mean, pred_uncertainty
def predict_all_results(
df,
main_model_path,
main_input_cols_order,
scaler_targets_main=None,
intermediate_model_path=None,
intermediate_results_columns=[],
return_uncertainty=False,
uncertainty_type="confidence_interval",
):
"""
Initial df must be scaled
Args:
-----
df: pd.DataFrame
Initial inputs
main_model_path: str
Path to the model to compute the main results
scaler_target_main: scaler for the main results
intermediate_model_path: None, str, dict can be a path to a model or a dict of models
intermediate_results_columns: List(str)
"""
if type(intermediate_model_path) == str:
# This section has not been checked (LB)s
predictions_constraint = predict(intermediate_model_path, df)
input_data_main = np.concatenate([df.values[:, :-1], predictions_constraint, [df.values[:, -1]]], axis=1)
elif type(intermediate_model_path) == dict:
### Predict the intermediaary results from a dictionary of models (not rescaled version of the intermediary outputs)
outputs_df = predict_from_multiple_models(
intermediate_results_columns,
intermediate_model_path,
df,
explainer_path_dict={},
scaler_targets_path_dict={},
)
input_data_main = pd.concat([df, outputs_df], axis=1) # Concatenate the scaled version of the data
else:
input_data_main = df.copy()
# Put data in the right order for the main model
input_data_main = input_data_main[main_input_cols_order]
# Run the main prediction
model_extension = main_model_path.split(".")[-1]
if model_extension == "h5":
predictions = predict(main_model_path, input_data_main, scaler_targets=scaler_targets_main)
uncertainty = None
else:
predictions, uncertainty = predict_from_ensemble_model(
main_model_path, input_data_main, uncertainty_type=uncertainty_type
)
if return_uncertainty:
return predictions, uncertainty
return predictions
def get_test_inference(
main_folder,
columns_numerical,
columns_target,
model_name,
test_data_path,
x_data_scaled=True,
y_data_rescaled=False,
):
X_test_data = read_data(os.path.join(main_folder, test_data_path))
columns_categorical = [column for column in X_test_data.columns if column not in columns_numerical]
y_test_data = unpickle_file(os.path.join(main_folder, "y_test_data.pickle"))
one_hot_scaler = unpickle_file(os.path.join(main_folder, "one_hot_scaler.pickle"))
minmax_scaler_targets = unpickle_file(os.path.join(main_folder, "minmax_scaler_targets.pickle"))
minmax_scaler_inputs = unpickle_file(os.path.join(main_folder, "minmax_scaler_inputs.pickle"))
for col in columns_target:
if col in columns_numerical:
columns_numerical.remove(col)
# If the data has not been already scaled
if not x_data_scaled:
df_with_results = X_test_data.copy()
X_test_data = scale_numerical(
X_test_data, minmax_scaler_inputs.feature_names_in_, scaler=minmax_scaler_inputs, fit=False
)
else:
df_with_results = pd.DataFrame(minmax_scaler_inputs.inverse_transform(X_test_data), columns=X_test_data.columns)
### Run model in inference mode
predictions = predict(os.path.join(main_folder, model_name), X_test_data)
y_test_data = minmax_scaler_targets.inverse_transform(y_test_data)
# Depending on the model used the targets may already be rescaled (case of Ensemble models to run the uncertainty)
if not y_data_rescaled:
predictions = minmax_scaler_targets.inverse_transform(predictions)
print("***************************************************")
print(predictions)
print(predictions.shape, y_test_data.shape)
results = pd.DataFrame(
{
"predictions": np.squeeze(predictions[:, 0]),
"ground truth": np.squeeze(y_test_data),
"mae": np.abs(np.squeeze(predictions[:, 0]) - np.squeeze(y_test_data)),
"mse": np.sqrt(np.square(np.squeeze(predictions[:, 0]) - np.squeeze(y_test_data))),
"percentage error": np.abs(
(np.squeeze(predictions[:, 0]) - np.squeeze(y_test_data)) / np.squeeze(predictions[:, 0])
)
* 100,
}
)
mean_results = pd.DataFrame(
{
"mean mae": [np.mean(results["mae"])],
"mean mse": [np.mean(results["mse"])],
"mean percentage error": [np.mean(results["percentage error"])],
}
)
print(mean_results)
metrics = {
"mae": mean_absolute_error(y_test_data, predictions),
"mape": mean_absolute_percentage_error(y_test_data, predictions),
"r2": r2_score(y_test_data, predictions),
}
with open(os.path.join(main_folder, "metrics.pkl"), "wb+") as file:
pickle.dump(metrics, file)
### Plot predictions vs ground truth
plt.clf()
plt.scatter(results["ground truth"], results["predictions"], c="r")
plt.plot(results["ground truth"], results["ground truth"])
plt.xlabel("Ground truth")
plt.ylabel("Predictions")
fig = plt.gcf()
fig.savefig(os.path.join(main_folder, "plot_performance_test.png"))
plt.show()
df_with_results["ground_truth"] = y_test_data
df_with_results["predictions"] = predictions
return metrics
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process parameters")
parser.add_argument(
"--model_path", type=str, help="The path to your model file", default="model_hardness.h5", required=False
)
parser.add_argument(
"--model_folder", type=str, help="The path to your model folder", default="./models/phases", required=False
)
parser.add_argument(
"--df_columns",
type=str,
help="List of data columns of dataset",
default="%A,%B,%C,%D,%E,%F,%Phase_A,%Phase_B,%Phase_C,%Phase_D,%Phase_E,%Phase_F,%A_Matrice,%B_Matrice,%C_Matrice,%D_Matrice,%E_Matrice,%F_Matrice,H,Temperature",
required=False,
)
parser.add_argument("--columns_target", type=str, help="List of target columns", default="H", required=False)
parser.add_argument(
"--columns_numerical",
type=str,
help="List of data columns with numeric values",
default="%A,%B,%C,%D,%E,%F,%Phase_A,%Phase_B,%Phase_C,%Phase_D,%Phase_E,%Phase_F,%A_Matrice,%B_Matrice,%C_Matrice,%D_Matrice,%E_Matrice,%F_Matrice,H,Temperature_C",
required=False,
)
parser.add_argument(
"--data_path",
type=str,
help="The path to your input data for inference",
default="X_test_data.pickle",
required=False,
)
args = parser.parse_args()
### Get categorical and numerical columns
columns_numerical = args.columns_numerical.split(",") if args.columns_numerical else []
df_columns = args.df_columns.split(",")
columns_target = args.columns_target.split(",")
get_test_inference(
args.model_folder,
columns_numerical,
columns_target,
args.model_path,
args.data_path,
x_data_scaled=True,
y_data_rescaled=False,
)
|